Reef Rescuers: Restoring coral reef ecosystem services

© Nature Seychelles
Published: 21 January 2016
Last edited: 08 February 2023
remove_red_eye 8070 Views


Reef Rescuers implented the first-ever large scale reef restoration project using "coral gardening". It involved collecting over 40,000 small pieces of healthy coral from sites that survived a bleaching event, raising them in underwater nurseries and transplanting them to a 5,300sq meter degraded site at Cousin Island Special Reserve affected by coral bleaching. It aims to build resilience in coral reefs damaged by bleaching and improve associated fisheries, tourism and coastal protection.


East and South Africa
Scale of implementation
Coral reef
Marine and coastal ecosystems
Ecosystem services
Local actors
Increasing temperatures
Ocean warming and acidification
Storm surges
Lack of access to long-term funding
Lack of technical capacity
Aichi targets
Target 10: Ecosystems vulnerable to climate change
Other targets
Seychelles NBSAP 2015-2020, Objective 2.6


Republic of Seychelles


impacts of climate change on coral reef ecosystems Death of coral reefs due to coral bleaching, storm surges and sea level rise are impacts of climate change that threaten the provision of coral reef ecosystem services. Without healthy coral reefs the vulnerability to climate-induced coastal risks and disasters increases and valuable income associated with tourism and fisheries is lost, thus increasing food insecurity.


dive operators and glass bottom boat operators, hotels and tourists and the general population, artisanal fishers

How do the building blocks interact?

The vulnerability assessment and stakeholder involvement plan (building block 1) guide the planning of the project and detail feasibility, location and size of the project. The vulnerability assessment determined that the concept of the project was correct and that a reef restoration project would increase the resilience of the local communities. The reef restoration included capacity development measures (building block 2). Volunteers with certain skills worked with the core specialist team in the field learning as they went along. In a 6-week training program acquired field-tested knowledge and skills on coral nurseries, coral transplantation and project sustainability were taught. The program has also become a forum for networking and plays an important function in promoting and advancing reef restoration efforts. Experiences and learnings from this project are detailed in a toolkit (building block 3). It describes the information needed for a coral reef restoration project from start to finish using the coral reef gardening concept, explaining what is needed for the planning, appropriate design, logistics and human resources, execution and post project monitoring and research.


• 5,300sq meters of new reef consisting 90 of 18 species of coral has been planted in the marine protected area of Cousin Island Special Reserve, completed in June 2014 and to date healthy, functioning and resilient to bleaching • 41 practitioners from 11 countries have been exposed to reef restoration techniques by “on the job” work as volunteers up to 3 months in situ, and 8 experts have to date been formally trained through a full-time 6 weeks classroom and field based Training Program. • Recent monitoring has shown 300% increase in fish species and 500% increase in numbers of fish in the new reef than in the degraded control site


Transplanted corals fight back against harmful algae By Dr Phanor Montoya-Maya, Technical/Scientific Officer & Trainer at Nature Seychelles’ Reef Rescuer project On Friday October 23rd 2015 I received word from our Science Officer Cheryl Sanchez that on the beaches of Cousin Island Special Reserve, a Marine Protected Area where our coral transplantation site is located many dead fish were washing up and. that the waters had a dark green appearance. Dr Nirmal Shah, Nature Seychelles CEO, confirmed that a harmful algal bloom was taking place and directed us to immediately survey our sites We arranged a dive first thing the following morning to check any effects in and around the coral reef transplantation site as harmful algal blooms (HAB) are known to cause serious negative impacts to coral reef communities. At the transplantation site we conducted visual surveys of the transplanted, degraded and healthy reef sites. Despite a few dead fish at the bottom, the sites looked ok. Fish were still seen in good numbers and no corals were bleached. When the underwater observations did not reveal any conspicuous changes we were relieved. However, more surveys were needed to ascertain the true impact of the HAB. Ten days after the onset of the HAB, we dived again and on the first dive at the degraded site, we low fish numbers and recently dead corals with some branches clean white and a thin layer of algae On the second dive at the transplanted site our observations were mixed: reef fishes were also low in numbers but there were no recently dead or bleached corals. We then dived at the control site and saw effects of the HAB: many colonies were dead and fish numbers were lower than ever recorded in the past two years. Analysis of our data revealed that the algal bloom seemed to have caused extensive coral bleaching. We also found that our coral transplants responded better to the stressful conditions. No dead colonies were observed at the transplanted site. This finding is remarkable and an extraordinary response of our "engineered" site. We don't rule out bleaching at the transplanted site but for some unknown reason they appear to recover faster and better than corals at other sites. This is a very promising result that adds support to Nature Seychelles’ novel theory that transplanting bleaching resistant colonies enhances the resilience potential of coral reefs in the face of climate change.

Contributed by's picture

Nirmal Shah Nature Seychelles

Other contributors

Nature Seychelles