Reptile farming as a response to livelihood insecurity in the Mekong Delta

Patrick Aust
Published: 18 November 2022
Last edited: 18 November 2022
remove_red_eye 248 Views

Summary

Extreme weather events and disease outbreaks represent growing threats to chicken and pig farmers in the Mekong delta. As an alternative, reptiles are a popular choice for many of the  21 million residents. Because of the physioloigcal efficiency attributes of reptiles (e.g., ectothermic or “cold-blooded”), many reptile production models have the potential to be economically viable and ecologically sustainable. A study published in 2009 in the International Journal of Food Microbiology found that the most significant microbiological risk associated with eating reptiles is Salmonella, and a growing body of evidence suggests birds and mammals represent the greatest zoonotic disease threat. In effect, reptile farming helps to build resilience in local agri-food systems and minimise the prevalence of zoonotic diseases.

Classifications

Region
Central America
East Asia
East and South Africa
South America
Southeast Asia
West and Central Africa
Scale of implementation
Multi-national
Ecosystem
Agro-ecosystem
Agroforestry
Cropland
Orchard
Rangeland / Pasture
Theme
Access and benefit sharing
Adaptation
Ecosystem services
Local actors
Sustainable livelihoods
Waste management
One Health
Animal health
Biodiversity-health nexus
Food systems
Health related aspects of socio-economic factors such as poverty, education, social security structures, digitalisation, financing systems, human capacity development 
Neglected tropical diseases, emerging infectious diseases, non-communicable diseases, zoonoses, antimicrobial resistance
Challenges
Floods
Tropical cyclones / Typhoons
Conflicting uses / cumulative impacts
Infrastructure development
Physical resource extraction
Changes in socio-cultural context
Lack of infrastructure
Lack of technical capacity
Sustainable development goals
SDG 1 – No poverty
SDG 2 – Zero hunger
SDG 3 – Good health and well-being
SDG 8 – Decent work and economic growth
SDG 9 – Industry, innovation and infrastructure
SDG 10 – Reduced inequalities
SDG 11 – Sustainable cities and communities
SDG 12 – Responsible consumption and production
Aichi targets
Target 1: Awareness of biodiversity increased
Target 2: Biodiversity values integrated
Target 3: Incentives reformed
Target 4: Sustainable production and consumption
Target 7: Sustainable agriculture, aquaculture and forestry
Target 8: Pollution reduced
Target 14: Ecosystem services
Target 16: Access to and sharing benefits from genetic resources
Target 19: Sharing information and knowledge
Sendai Framework
Target 1: Reduce global disaster mortality by 2030
Target 2: Reduce the number of affected people globally by 2030
Target 3: Reduce direct disaster economic loss in relation to GDP by 2030
Business engagement approach
Direct engagement with a company
Direct engagement with associations
(I)NDC Submission

Location

Mekong Delta, Vietnam | Thailand, China, Argentina, Zimbabwe, Kenya, United States, Namibia, Australia, Cambodia, Mexico, South Africa, Indonesia, and Brazil.

Challenges

Vietnam has a rich culinary history in agrobiodiversity, including the consumption of reptiles. Challenges such as droughts, heatwaves, pandemics, greenhouse gas emission, and resource deficiencies are undermining mainstream livestock industries. Commercial bottlenecks and investment bias towards conventional corporate livestock systems have handicapped the development of localised, more sustainable and resilient alternatives such as reptile farming. 

Beneficiaries

Primary beneficiaries include farmers in the Mekong Delta and the communities they support. Secondary beneficiaries include billions people in tropical countries who traditionally eat reptile meat.

How do the building blocks interact?

 Legal and policy frameworks are essential prerequisites for reptile farming. These are not always easy to develop given the temporal and spacial proximity to stringent conservation regulations and wildlife trade laundering. Education and awareness at all stakeholder levels are important to justify legal and policy frameworks and consider the interactions with broader sustainablity criteria (e.g., conservation, environment pollution risks, and social upliftment). Farming reptiles requires specialist skills and considerations. Resolving the lack of skills and precedent amongst the farming community requires training and capacity development. Once equipped with technical knowhow, low start-up and running costs coupled with diverse business opportunities provide small-scale farmers with an attractive proposition. Mitigating risks associated with human and animal health will require ongoing multidisiplinary and cross-cutting research in areas such as water pollution and infectous diseases linked to reptile production systems.

Impacts

As ectotherms, reptiles are physiologically different to humans. Zoonotic disease transmission requires mutually compatible physiological environments. Reptiles are carriers of zoonotic bacteria such as Salmonella, but they have never been linked to any major viral pandemics. 

 

Reptiles require ~90% less food inputs compared to warm-blooded livestock. The metabolic efficiency of reptiles means that production systems typically require less food and freshwater compared to warmblooded livestock. They also produce comparatively little waste or greenhouse gasses.

 

That said, emperical evidence on the broader risks to human health (e.g., wild harvested rodents fed to captive reptiles) and environmental sustainaibliy (e.g., water pollution) is lacking and requires further investigation. 

 

The ability to regulate metabolic rate allows some reptile species to drink and feed intermittently. Flexible metabolic rates help to dampen the impacts of volatile supply chains. For example, pythons can survive for several months without food or water, and are thus able to withstand the impacts of extreme weather events.

 

Reptile meat is high in protein and low in saturated fats. Reptile farms provide a source of nutrient-dense food in parts of the world where malnutrition and childhood stunting are increasing due to poverty.

Story

Patrick Aust

Nguyen Van Tri is a farmer near Cau Mau in the Mekong Delta. He owns 10 acres on which he grows rice, vegetables, and bananas. He has two fish ponds and raises a small number of ducks and chickens around his homestead. The produce from his farm feeds his family of six and generates a small profit. In recent years, drought, storm surge, and salinization from a neighbouring shrimp farm have reduced his rice harvest. Disease has also taken a toll on his poultry. Five years ago he started snake farming after reading an article in the local newspaper. He bought his initial stock from a breeding farm near Ho Chi Minh City and built cages using cheap, local materials. It was easy to set up, and because he feeds his snakes on rodent pests he traps around his rice fields, his running costs are minimal. The work is easy and requires comparatively few inputs. Mr. Nguyen doesn’t have to rely so heavily on his rice harvest anymore, and because his snakes can survive months without food, he doesn’t have to worry about fluctuations in the local rodent population; he simply feeds as much as he can whenever he can. Recently he bought a new moped with the money he made from the sale of snake skins. To celebrate, Mrs Nguyen cooked a snake hot pot using a traditional recipe passed down by her grandmother.

Contributed by

patwaust_41946's picture

Patrick Aust Backyard Pythons