Ecological Restoration (Nature-based solutions that both restore ecosystems and also sequester carbon, e.g. "trees, shrubs and grass" approach)

In order to restore the degraded land, to increase the vegetation coverage and biodiversity, and to recover the ecosystem functions of windbreak and sand-fixation, the project employs the tertiary structure of "trees, shrubs and grass." Native species of trees, shrubs, and grass were selected for maximum ecological service function, including carbon sequestration and habitat potential. Since 2010, we have restored a priority area of 2,585 hectares of degraded land, as identified by the Helinge’er County Ecological Restoration Plan. Restoration activities included planting nearly 3 million trees that is estimated to capture more than 160,000 tons of CO2 over the next 30 years.

 

Aiming at gully areas with serious water and soil erosion, the project incorporated engineering and biological approaches, introduced new technologies such as a "biological blanket"(It is a high strength ecological slope protection tool made of a variety of naturally degradable materials. Biological blanket helps reduce soil erosion on the slope) and successfully restored nearly 600 hectare (9,000 mu) of soil and water loss areas in 14 gullies.

  • Buy-in and agreement from all parties – the Inner Mongolia Forestry Bureau, the local community, TNC scientists, and funders – enabled effective collaboration over a decade to implement restoration activities
  • Partnerships with the implementing company to make sure the restoration process took in place  as planned.
  • Through philanthropic support, TNC had funds to hire temporary and seasonal workers to implement restoration work and provide much needed additional income for the population which was living at or near the poverty line.

Through simulation and calculation, the most important areas that could guarantee restored ecological service function were selected under the principle of as small an area as possible and as low maintenance costs as possible.  Cost is one of the major barriers to ecological restoration and can prevent local communities from participating. During implementing, the method is constantly adjusted according to the actual situation and in order to reduce the cost (labor, transportation, etc.) and improve efficiency. When the economic cost is smaller, the method became more scalable/adoptable by others.