Monitoring and evaluation for evidence-based practice and sustainability

This building block emphasises community participation in monitoring, utilising citizen science and accessible data platforms to ensure local knowledge informs adaptive management and contributes to the long-term success of mangrove restoration.

Effective monitoring and evaluation is necessary for adaptive management and long-term success in mangrove restoration. In implementing CBEMR, Wetlands International developed a restoration plan with clearly defined goals and objectives aligned with measurable and relevant indicators.

To ensure accurate and consistent data collection, a variety of methods were employed, including surveys, field observations, remote sensing, and the use of the Mangrove Restoration Tracker Tool. This tool, integrated with the Global Mangrove Watch platform, provided a standardised framework for documenting and tracking restoration progress, facilitating learning and information exchange among practitioners. 

Strengthening the capacities of mangrove champions from Lamu and Tana counties through standardised CBEMR trainings and tools provided for the integration of citizen science initiatives in mangrove restoration monitoring.  

Creating platforms for community feedback and input such as the national and sub-national mangrove management committees ensures that local knowledge and perspectives are incorporated into adaptive management strategies. By using monitoring data to inform decision-making and adapt project strategies, restoration efforts such as those in Kitangani and Pate restoration sites have been continuously improved to maximise effectiveness and achieve long-term success.

In implementing the CBEMR approach in Kenya, we have learned the following: 

  • Adaptive management is key: Monitoring data has allowed for ongoing learning and adaptation of restoration strategies based on observed outcomes.
  • Community involvement is necessary: Engaging communities who interact with the ecosystem on a daily basis in monitoring restoration efforts strengthens ownership and ensures that local knowledge informs decision-making.
  • Data accessibility and transparency are essential: Sharing monitoring results with stakeholders promotes accountability and facilitates collaboration and cross-learning. 
  • Long-term monitoring is necessary: Tracking progress over time provides valuable insights into the long-term impacts of restoration efforts.
NoArk's Building Blocks

The building blocks of NoArk's solution are interconnected to create a comprehensive, efficient system for conservation and environmental management. Bio-acoustic and chemical sensors collect critical ecological data, while Edge AI processing ensures rapid, on-site analysis, enabling immediate detection and response. These components are supported by LoRaWAN connectivity, which facilitates reliable, long-range communication in remote areas. The processed data is centralized on the PAMS dashboard, where it is visualized and analyzed for actionable insights, fostering better decision-making.

This system is strengthened by hyperlocal climate data, which enhances precision in risk assessments and planning. Finally, community and stakeholder engagement ensures the data and tools are effectively utilized, promoting collaboration and adaptability. Together, these elements form an integrated solution that empowers conservation efforts, addresses ecological threats, and supports sustainable development.

The purpose of the building blocks in NoArk’s solution is to create an integrated and scalable system for addressing ecological, social, and economic challenges. Each building block plays a unique role and works in harmony with the others to deliver impactful outcomes.

How Each Building Block Works  

1. Bio-Acoustic and Chemical Sensors
  - Purpose: To monitor ecological and environmental health.  
  - How it Works: These sensors detect specific sounds (chainsaws, wildlife movement) and measure air and water quality, providing real-time data on biodiversity and pollution levels.  

2. Edge AI and IoT Integration
  - Purpose: To process data locally for faster decision-making.  
  - How it Works: Edge AI analyzes data directly on the devices, reducing reliance on cloud processing. IoT connectivity ensures data is transmitted securely and efficiently.  

3. LoraWAN Connectivity
  - Purpose: To enable cost-efficient, long-range communication.  
  - How it Works: LoraWAN ensures sensor data is transmitted over long distances with minimal power consumption, making it suitable for remote deployment.  

4. PAMS Dashboard
  - Purpose: To centralize and visualize data for actionable insights.  
  - How it Works: The dashboard aggregates data from all devices, providing tools for predictive analytics, real-time monitoring, and decision support.  

5. Hyperlocal Climate Data
  - Purpose: To support precise, localized interventions.  
  - How it Works: Sensors generate accurate, auditable data that informs risk assessments, conservation planning, and disaster management.  

6. Community and Stakeholder Engagement
  - Purpose: To ensure effective implementation and adoption of the system.  
  - How it Works: Partnerships with local communities, researchers, and decision-makers foster collaboration, capacity-building, and long-term sustainability.

Enabling Factors


- Technological Infrastructure: Reliable sensors, robust AI, and IoT technologies enable seamless data collection and processing.  
- Partnerships and Collaboration: Engagement with local communities, governments, and research organizations ensures the system is tailored to specific needs.  
- Scalability: LoraWAN and modular design allow deployment in diverse ecosystems and scaling to larger projects.  
- Sustainability: The system’s low power requirements and stakeholder involvement ensure long-term functionality and impact.  

These enabling factors ensure the building blocks work cohesively to deliver a holistic, impactful solution for conservation and environmental management.

Conditions Important for Success  

1. Reliable Technological Infrastructure  
  - High-quality sensors, robust Edge AI, and IoT systems are essential for accurate and timely data collection and processing.  

2. Strong Connectivity
  - LoraWAN or similar long-range, low-power communication systems are critical to ensure seamless data transmission in remote or challenging environments.  

3. Stakeholder Engagement  
  - Collaboration with local communities, governments, and researchers ensures the solution is contextually relevant, widely accepted, and effectively implemented.  

4. Scalability and Modularity
  - Designing systems that can scale and adapt to various ecosystems and environmental challenges is key to broader impact and replication.  

5. Sustainability Planning  
  - Developing low-power solutions, clear funding strategies, and community-driven maintenance plans ensures long-term functionality.  

6. Capacity Building
  - Training stakeholders, including local communities and enforcement agencies, to utilize and interpret the system’s data enhances the effectiveness of the solution.  

Lessons Learned

1. Adaptability is Critical
  - Each deployment requires customization to address local ecological, social, and economic conditions effectively.  

2. Community Involvement Drives Success
  - Engaging local stakeholders early fosters ownership, increases trust, and enhances adoption.  

3. Robust Data Systems Improve Decision-Making
  - Providing accurate, auditable, and traceable data builds credibility with decision-makers and supports informed interventions.  

4. Connectivity Challenges Must Be Addressed
  - Remote deployments need reliable communication systems like LoraWAN to ensure uninterrupted data flow.  

5. Integration of Multi-Sensor Inputs Enhances Impact
  - Combining bio-acoustic and chemical sensors with climate data creates a comprehensive understanding of ecological challenges, enabling holistic solutions.  

6. Continuous Feedback Loops Improve Performance  
  - Iterative updates based on field experience and stakeholder feedback optimize system performance and impact.  

By meeting these conditions and applying lessons learned, NoArk’s solution ensures effective implementation and significant positive outcomes for conservation and environmental management.

Community Education and Engagement

Through the Tunas Scholarship program and conservation education initiatives, HARPA builds long-term community support for conservation. This approach connects conservation with education and local development, ensuring sustainable impact through community involvement.

Enabling factors:

  • Structured education programs
  • Local community partnerships
  • School network collaboration
  • Scholarship program framework
  • Regular community engagement activities

Lessons learned:

  • Education programs are most effective when combined with direct community benefits
  • Long-term engagement proves more impactful than one-off activities
  • Local wisdom and cultural sensitivity are crucial for program success
  • Scholarship programs effectively build next generation of conservation advocates
Strategic NGO Partnership Framework

HARPA collaborates with specialized conservation NGOs who serve as expert implementers in their respective fields. Each NGO partner is carefully selected based on their expertise and track record. This framework enables effective program implementation while ensuring professional conservation standards are met.

Enabling factors:

  • Network of verified conservation NGOs
  • Clear partnership agreements
  • Defined roles and responsibilities
  • Regular coordination meetings
  • Standardized reporting protocols

Lessons learned:

  • Clear roles and responsibilities must be established at partnership initiation
  • NGO partners need autonomy in technical implementation within their expertise
  • Regular coordination and standardized reporting are essential for quality maintenance
  • Proper credit and recognition sharing is vital for successful partnerships
Multi-Stakeholder Resource Mobilization

HARPA leverages Kitabisa.org's digital platform to connect multiple funding sources (public donors and corporate partners) with conservation NGOs. The system enables transparent fund distribution, real-time tracking, and impact reporting. This approach ensures sustainable funding for conservation programs while maintaining accountability to all stakeholders.

Enabling factors:

  • Kitabisa.org's trusted digital infrastructure
  • Established corporate partnership network
  • Strong public crowdfunding community
  • Transparent reporting system
  • Efficient fund distribution mechanism

Lessons learned:

  • Transparency in fund allocation and impact reporting is crucial for building long-term donor trust
  • Combining crowdfunding with corporate funding creates more stable resource streams
  • Personalized programs for corporate partners significantly increase engagement
  • Regular progress updates to donors improve retention rates
Building Block 2. Assessment

In this second Building Block, the Climate Vulnerability Index (CVI) was applied to l to assess the risks and threats posed by climate impacts like wave action, sea level rise, erosion, and precipitation, informing the actions taken.

Building Block 1. Environmental Actions

This Building Block involved the following environmental actions: 

  • Constructing a protective wall to mitigate wave action and coastal erosion.
  • Planting mangrove trees along the coast to stabilize the shoreline and protect against sea level rise, erosion, and storm surges.
  • Rehabilitating stairs at Husuni Kubwa Palace which had been impacted by natural forces, specifically wave action.
Launch of the hydroponic facility

Phase 3: The hydroponic fodder production facility was launched, supplying high-quality fodder to local farms and initiating monitoring and evaluation to track progress and impact. The flexibility of the hydroponic system allows for adaptation to farmers' needs, offering scalability depending on resource availability. Smaller, premanufactured systems can be used initially, reducing the financial burden for farmers, while locally sourced materials can further cut costs before larger setups are adopted. In many rural areas where men often migrate in search of employment, women have increasingly taken on significant agricultural roles. By learning smart farming techniques such as hydroponics, women gain critical skills in business and resource management. These new capabilities not only improve their self-reliance but also empower them to become leaders in their communities, inspiring other women to engage in sustainable farming and advocate for gender equality.

Training Sessions

Phase 2: Training sessions were conducted for local farmers on hydroponic techniques and livestock management, emphasizing sustainable practices and resource efficiency. 

To bring this vision to life, a reputable Spanish supplier, known for its advanced hydroponic systems, was selected through a competitive tender process. This company, with decades of experience in developing hydroponic technologies, provided a full-service package, including business consultancy, system manufacturing, delivery, installation, and setup. Recently, the company’s expert visited Tajikistan to oversee the installation of the hydroponic system and provide hands-on training to local farmers. These sessions addressed common challenges in hydroponic farming, such as managing root rot and bacterial diseases, ensuring that farmers could effectively manage their new systems from the start.

Upgrade local knowledge

Turtle hatchery management was not entirely new for local community members and authorities. Previous projects on Saint Martin Island had supported successful turtle conservation activities funded by UNDP. The Department of Environment also implements turtle hatchery initiatives during the breeding season. 

In Tioman, Juara Turtle Project, the host organization who trained the Bangladeshi delegation, formed by government officials and a local community champion, shared their turtle hatchery protocol. This protocol was discussed with Saint-Martin Island turtle conservation group members and adopted to upgrade their practices. 

The learnings from the site visit were easily transferrable, even if the learning exchange only lasted for a week, because Saint Martin Island’s stakeholders had already a good knowledge and practice of turtle hatchery. It was only a matter of adding some structure and process to their current practice. Even though, compared to Tioman, there are species-level differences; in Bangladesh, the Olive Ridley turtle (Lepidochelys olivacea) is predominant, whereas in Tioman, the Green (Chelonia mydas) and Hawksbill (Eretmochelys imbricata) turtles are more common. And there is a difference in the average temperature range. 

Besides, they also learned how to protect turtle eggs from predation, especially by feral dogs, the biggest threat for turtle conservation on the island. This latter aspect came as a bonus, as it was not expected to be part of the learnings.

  • Previous knowledge and practice on the topic
  • Engaged community conservation groups
  • In line with local authorities' priorities