Modular Drone Technology

Our modular drones are designed for accessibility, adaptability, and sustainability. Initially crafted using wooden components with fewer than six screws and zip ties, they are simple to assemble, repair, and replicate using local materials, empowering communities to lead restoration projects independently.

As we’ve advanced, we’ve integrated hydrogen fuel cells and hybrid-electric propulsion systems, enhancing flight endurance, energy efficiency, and environmental sustainability. These innovations enable drones to cover larger areas and operate in remote environments while reducing their carbon footprint.

The modular design ensures flexibility for continuous adaptation, allowing communities to upgrade drones with tools like cameras or sensors for monitoring. This approach combines simplicity and cutting-edge innovation, bridging grassroots empowerment with scalable, impactful environmental restoration.

Results

Under the application of the trap for intermittent harvest, the best results were achieved with the following combination of variables: maize bran (supplementary feed) x maize bran (trap bait) x O. Shiranus (species) x 2 fish/m2 (stocking density).

The total yields under this combination were 25 percent higher than in the control group with single batch harvest. A higher stocking density (3 fish/ m2) led to a slightly higher total harvest in the control group, but to a lower net profit. The use of pellets reinforced both effects and was the least economical.

Results from the on-farm trials (see Figure 1) have demonstrated the functionality and the excellent catch effect of the traps. Over the three-month on-farm trial period, the trap was used 2 to 3 times a week and a total of 27 times. On average, around 120 small fish – an equivalent of 820 grams – were caught each intermittent harvest. With the use of the trap, all households reported that they now eat fish twice a week. Before that, fish consumption was between one and four times a month.

The benefits:

  • Reducing the competition for oxygen and food among the fish in the pond and thus measurable increase in yield.
  • Improved household consumption of small, nutritious fish and better cash flow.

Success factors:

  • Traps are easy and inexpensive to build (USD 3).
  • Traps are easy to use, also for women.
  • Directly tangible added value thanks to easy and regular access to fish.

 

Examples from the field

Overall, the user experience of households engaged in the on-farm trials was very positive:

As a family we are now able to eat fish twice and sometimes even three times a week as compared to the previous months without the technology when we ate fish only once per month.” (Doud Milambe)

Catching fish is so simple using the fish trap and even women and children can use it.” (Jacqueline Jarasi)

It is fast and effective compared with the hook and line method which I used to catch fish for home consumption that could take three to four hours but to catch only three fish and thus not enough for my household size.” (Hassan Jarasi)

Methodology
  • Involvement of the local community
  • Responding to community needs 

The openes of the  community to learn and adopt the toolkit.

The financial support to the prooject 

The effective of the toolkit in detering the wildlife from farm 

Funding and professional development training

For many conservationists, including our participants, the knowledge to effectively use conservation technology is not enough without the funding to access the tools. Recognizing this barrier, we provide each participant with $500 USD in seed funding to help them implement their conservation solutions. Additionally, we offer training in grant writing, pitching, and engaging with funders to enhance their ability to secure future funding.

  • Support from donors who fund seed grants 
  • Students are required to submit two updates and a financial report for their grant. Ensuring follow-up on these submissions requires dedicated effort and engagement from the core team  
  • Students have reported that being able to list the seed funding received through our program on their CVs has helped them secure additional funding opportunities in the future.
Hands-on engagement

For our technical training, we prioritize activities that allow students to directly interact with conservation technology tools. By setting up and deploying tools in safe, low-pressure environments, students have the opportunity to make mistakes and learn from those experiences. For example, letting students decide where to place a camera trap based on a lesson, and then evaluating the effectiveness of their decision by reviewing the data collected, is highly valuable. 

  • Access to technology tools at host institution for practical use 
  • Opportunities for students to trial and test tools themselves
  • Experience instructors to provide guidance and support 
  • When paired with supporting background information, we have found these hands-on experiences to be more impactful than traditional lectures or merely observing technology in use 
  • Providing opportunities to engage with the entire lifecycle of a technology (e.g., from set up and deployment to data collection and analysis) better prepares students for using these technologies in their own projects
Focus on early career potential

We select participants who are at the beginning stages of their careers, such as those who have completed their bachelor’s degrees and are entering the NGO or conservation workforce or embarking on higher education.The goal is to identify participants whose careers would benefit the most from the type and amount of training, funding, mentorship, and support we provide. 

  • Strong networks with local academic institutions and regional NGOs help us attract a large pool of qualified applicants (~200 applications per year)
  • Tailored educational materials that align with the needs of early-career participants
  • Community of same-stage participants form strong and enduring connections 
  • Initially, we included participants at various career stages, but we found that older, more experienced individuals have different needs and require a distinct program tailored to their experience level
  • Our entry-level training materials were less useful for women with more experience in the field
  • Over the past two years, we’ve recruited at least one participant without formal education but with extensive on-the-ground experience. These individuals have thrived in the program, highlighting an opportunity to further cater to this audience in future iterations.
Local partners and host institutions

This program aims to equip women with practical skills that are actionable within their local context, enabling them to seize opportunities such as funding and career advancement within their specific regions. To achieve this, we collaborate closely with local partners and host institutions to adapt our core training materials, ensuring they align with local challenges, processes, and institutions. By tailoring our trainings to address the unique needs and contexts of the women we support, we maximize the relevance and impact of our programming. 

  • Local partners with aligned visions in education, upskilling, and empowerment 
  • On-the-ground support from women within the host and collaborating organizations 
  • Networks of experienced local educators and trainers in the conservation technology space  
  • Educational systems vary significantly, even across countries in the same region. For example, certain types of trainings or activities - such as active learning approaches - may be more difficult for students from countries where education is centered on rote memorization. Understanding local learning preferences and adapting teaching methods accordingly can support deeper engagement. 
  • Certain technologies or methodologies, such as drones or cloud-based data storage, may be prohibited or prohibitively expensive in some. Partnering with local conservation technology experts ensures that we focus on accessible, actionable technologies for our participants.
Academic Communication

Project results were disseminated via an academic paper in Ocean-Land-Atmosphere Research (a Science Partten Journal) and shared in AAASScience WeChat Public (Official Media of American Association for the Advancement of Science in China). The findings were also included as a case study in the Yangtze River Delta Pilot Site and included in the support of major research projects on oceanography by the National Natural Science Foundation (NSFC).

 

  • Communicating challenges and solutions in academic and public platforms expanded the reach and impact of the project.
  • Results were systematically presented to stakeholders, increasing awareness and adoption potential.
  • Open dissemination enhances collaboration and knowledge-sharing across disciplines.
  • Publishing actionable insights in both academic and public domains accelerates the solution's adoption by conservationists worldwide.
Academic Communication

Results were disseminated via an academic paper in Ocean-Land-Atmosphere Research (a Science Partten Journal) and shared in AAASScience WeChat Public (Official Media of American Association for the Advancement of Science in China). The findings were also included as a case study in the Yangtze River Delta Pilot Site and included in the support of major research projects on oceanography by the National Natural Science Foundation (NSFC).

By systematically integrating remote sensing data, deep learning, and ecological analysis, the project has significantly advanced wetland conservation methodologies, offering scalable solutions for biodiversity preservation,  biological invasion control,  and ecosystem management globally.

Evolve

Villages participating in the Sustainable Rangeland Initiative can then come together at a Community Technology Center to share information and make collective decisions for pasture management and active restoration for the next season based on pasture quality data as well as projections of herd size and anticipated rains. 

APW works closely with each village grazing committee to refine its rangeland management plan or to assist in developing one. APW follows the existing government and traditional village structures. In case such structures do not already exist, the team helps facilitate their formation, building capacity to manage rangelands.

APW has learned the importance of working not just with village-level committees but also with larger ward-level governments. Many villages in northern Tanzania share rangeland or have adjacent pastures. Thus, it is necessary to work with neighboring villages to ensure continuity in management and connectivity of ecological benefits. Since adjacent villages may compete for high-quality rangeland, cooperative management of neighboring grazing areas is imperative. As villages are added to the program, gaps in ward-level management are filled by APW and other partners, moving one step closer to ensuring connectivity in a landscape shared by people, livestock, and wildlife.

In 2020, APW began conducting harmonization meetings that bring together different stakeholders from the village level, wards, divisions, districts, regions, different ministries, parastatal institutions, NGOs among other stakeholders to discuss and streamline different agendas in regards to rangeland management in their different areas of work and also influence policy.