5. Continuous Monitoring and Evaluation

Regular engagement allowed for the assessment of impacts and adjustments based on feedback, ensuring the project remained aligned with community needs and goals. Monitoring strengthened relationships between implementers and beneficiaries, building trust and accountability.

 

Continuous evaluation closed the loop by integrating lessons learned back into decision-making, capacity building, and implementation, ensuring the project stayed adaptive and relevant.

Engagement of Men and Boys in addressing GBV in the Fisheries Sector.

This building block emphasizes the critical role of engaging men and boys in addressing GBV within the fisheries sector. Recognizing that gender equality requires collaboration between men and women, this initiative targets the predominantly male-dominated fisheries sector to foster a more inclusive and supportive environment. By involving men ie: fishermen, law enforcer, male stakeholders, landowners, transportation providers, and traditional leaders—in awareness raising, training, and GBV Watch Committees, the intervention seeks to transform negative attitudes and behaviours that perpetuate GBV, including exploitative sex-for-fish practices. It also leverages the influence of traditional leaders to drive societal change, ensuring that men play an active role in avoiding backlach and safeguarding women and addressing the interconnected challenges of resource depletion, illegal fishing, and GBV. 

  1. Inclusive Approach - Ensuring that men and boys are actively included in interventions, such as training and GBV Watch Committees, to foster collaboration and shared responsibility.
  2. Engagement with Influential Men - Involving traditional and religious leaders, teachers, and fisheries officers, fishermen and law enforcers as agents of change to drive community-wide transformation.
  3. Respecting Cultural Dynamics - Gaining the buy-in of traditional leaders by respecting their roles and aligning interventions with local governance systems.
  4. Awareness and Capacity Building - Raising awareness among men about the impact of GBV and providing them with tools to address it within their roles as resource and tradition custodians and community leaders.
  1. Collaboration Is Essential: Addressing GBV effectively requires working with both men and women, as men are often key decision-makers and actors in the fisheries sector.
  2. Cultural Sensitivity Matters: Engaging traditional leaders takes time and patience but is critical for securing their support and using their influence to enact change.
  3. Systematic Inclusion Yields Results: Including men in GBV Watch Committees and training sessions has fostered shared responsibility and reduced resistance to interventions.
  4. Sustained Engagement Is Needed: Changing perceptions and behaviors among men requires continuous awareness and reinforcement to ensure long-term impact.
  5. Sector Integration Is Key: Fisheries officers, while primarily tasked with technical duties, can play a significant role in addressing GBV once sensitized and empowered.
Cash Crop Integration for Sustainable Incomes

The cash crop integration component aimed to incentivize tree management by linking reforestation efforts with short-term income generation. Top-performing farmers, assessed based on tree survival rates and GAP training participation, were awarded cash crop inputs such as soya beans and groundnuts. These crops were selected for their adaptability to local soils, market demand, and ability to complement agroforestry systems. Farmers achieved an average 12% increase in soya bean yields (350 kg/acre) and 10% increase in groundnut yields (240 kg/acre), with incomes averaging UGX 1,050,000 ($285) for soya beans and UGX 900,000 ($244) for groundnuts. The inclusion of cash crops encouraged farmers to maintain their agroforestry systems, reducing tree felling for short-term needs.

  • Crop Suitability: Identifying crops that thrive in local conditions while supporting agroforestry practices.
  • Farmer Training: GAP for cash crops, focusing on planting density, pest management, and post-harvest handling to improve yields.
  • Market Access: Establishing links with traders and milling companies to secure 15% higher prices and reduce reliance on middlemen.
  • Monitoring and Evaluation:  Digital monitoring and evaluation, regular farm visits to assess crop performance and address challenges promptly.
  • Crop integration incentivized tree preservation and diversified farmer incomes, enhancing resilience to climate shocks.
  • Regional variation in weather and soil conditions impacted yields. Research and consultancy would help identify the most suitable varieties.
  • Poor post-harvest handling in some areas reduced profits. Training on crop drying and storage is essential to maximize market value.
  • Develop region-specific crop calendars and include low-cost storage solutions to address post-harvest losses. Partnering with buyers early ensures market demand aligns with farmer production.
Tree Planting at community Level

The primary purpose of tree planting at community level is to achieve large-scale ecosystem restoration while enhancing local livelihoods through agroforestry. The project partnered with four communities to mobilize 425 farmers for tree planting, distributing 73,867 seedlings. Farmers were trained in Good Agroforestry Practices (GAP), including tree planting techniques, mulching, pest and disease management, and soil fertility enhancement. Tree species like Grevillea robusta and Agrocarpus were selected for their fast growth, timber production potential, and ability to improve microclimates and soil structure. Tree planting activities focused on degraded lands prone to erosion and drought, effectively addressing flood control, biodiversity restoration, and ecosystem loss.

  • Farmer Training: Comprehensive GAP training to equip farmers with technical skills in tree care, pruning, and pest management.
  • Species Suitability: Selecting trees adapted to regional environmental conditions to maximize survival and growth rates including soils, weather, culture and .
  • Monitoring Systems: Continuous farmer field visits to monitor growth, survival rates, and emerging challenges.
  • Community Ownership: Collaborating with SEs and local leaders ensured trust, commitment, and adoption of sustainable tree management practices.
  • Integration of trees with cash crops enhances farmer engagement and ensures long-term care for planted trees.
  • Survival rates were highest in areas with reliable rainfall (Kapchorwa at 92%), highlighting the need for location-specific strategies in drought-prone regions.
  • Termite infestations in Busia and Mbale posed a challenge, requiring targeted pest control solutions such as biological control agents and mulching to minimize damage.
     

    Advice: Deploy tree care manuals with localized pest and soil management techniques. Integrate weather forecast systems to align planting activities with optimal rainfall periods and mitigate drought-related losses.

Community-Based Nursery Beds

The purpose of community-based permanent nursery beds is to ensure the production of high-quality, resilient seedlings for reforestation efforts while building local capacity. Each of the four project districts (Luwero, Mbale, Busia, and Kapchorwa) established one centralized nursery bed per location, equipped with essential tools, irrigation facilities, and trained nursery operators. Seeds were delivered early (December 2023–January 2024) to allow for the full growth and hardening process, ensuring seedlings met survival standards. The nurseries produced 96,423 seedlings of multi-purpose tree species, including Grevillea and Agrocarpus, which were selected for their adaptability to local climatic conditions, drought resistance, and soil stabilization properties. Nurseries also served as training hubs, where farmers learned good agroforestry techniques, seed propagation, pest control, and seedling management techniques.

  • Technical Knowledge: Trained operators with skills in seed management, seedling management, farmer training, community mobilisation and engagement, root pruning, and hardening-off processes.
  • Access to Inputs: Reliable supply of quality seeds, potting materials, and pest control inputs.
  • Water Availability: Sustainable irrigation systems to overcome drought periods and maintain seedling health.
  • Community Engagement: Active participation from farmers and local leaders to monitor and support nursery operations.
  • Early seed delivery, proper management, good nursery management and seedling hardening significantly improved tree survival rates in harsh field conditions.
  • Poor irrigation infrastructure in some locations exposed seedlings to water stress during dry spells. Investment in simple irrigation techniques is recommended to mitigate this.
  • Root damage and poor seedling management during transplanting led to seedling mortality in some cases. Ensuring proper root ball integrity during handling is critical.
     

    Advice: Establish contingency production targets (10–15% above the actual requirement) to buffer losses from pests or weather-related issues. Additionally, develop on-site water harvesting systems to support irrigation during drought periods.

Delopment of the SIREN App

This building block is to explain how I developped an App that allow fishers to contribute to marine science knowledge in Africa. 

Initially we gave fishers a pre-printed form to report opportunistic sightings they encountered. However, the form was getting lost most of the time. 

We decided to move to a digital solution. The existing App by then required internet to work and was just too complicated for fishers. So we thought we shoud develop an App that will be more userfriendly for fishers. 

We wrote the  algorithm (workflow) of the App and then contracted an Indian development company to write the code. 

Later we had to bring the development of SIREN back to Cameroon to reduce the cost of developement. 

We work with volunteer around the world that will continuously support with the development of the SIREN

  • passion and determination
  • availability of seed fund to develop an initial version of the SIREN App
  • Collaboration with local App developpers
  • Extending the collaboration to international volunteers 
  • understand
  • The first developper company I contracted for the development of SIREN was a foreign company based in India. The cost of develpment was very high and there was a lot of miscomunication due to language barriers. When we started working with local developpers, the cost of development decreased importantly and it was easier to communicate.
  • Before giving a smarphone to fisher for data collection you must develop a trust relationship with him before otherwise the phone will never be used by the fisher to report sightings.
Collaborative Partnerships for Conservation

This building block focuses on the establishment of strong partnerships between academic institutions (Universidad Politécnica de Yucatán), local governments (Secretaría de Desarrollo de Sustentable del Estado de Yucatán), and conservation organizations (International Union for Conservation of Nature and Natural Resources), private sector (Huawei), and local communities (Dzilam de Bravo) to enhance the collection and analysis of biodiversity data, access to technological infrastructure, government program instrumentation and application, and local ownership and execution.

The purpose of this building block is to foster cooperation among diverse stakeholders to ensure the effective implementation of conservation technologies. These partnerships enable the sharing of resources and expertise, empowering local actors to participate in conservation projects and creating a framework for sustainability.

Enabling factors:

  • Strong engagement and alignment between stakeholders, including academic institutions, government agencies, conservation organizations, private sector and local communities.
  • Signed agreements that define clear roles, responsibilities, and benefits for all parties involved.
  • Access to local knowledge and expertise to ensure the relevance and effectiveness of conservation actions.
  • Transparent communication between stakeholders is crucial to build trust and ensure the long-term success of partnerships.
  • Including academic institutions fosters innovation and provides opportunities for student involvement in meaningful projects.
  • Government involvement helps to create conservation policies and facilitates execution in the community.
  • Partnerships with conservation organisations strengthen the scalability and visibility of conservation initiatives by pooling resources and knowledge.
  • Community of Dzilam de Bravo provides data on field and by taking ownership of the project, they contribute to efficient project execution 
  • Private sector provides infrastructure and expertise to facilitate the development of the technology
Advanced Image Recognition Algorithms for Jaguar Monitoring

This building block is centered on the use of Convolutional Neural Networks (CNNs), including Siamese and Autoencoder architectures, to detect and identify individual jaguars based on unique features such as rosette patterns and morphology. These algorithms process camera-trap data efficiently, reducing the time required for analysis and providing critical insights for decision-making in conservation.

The purpose of this building block is to enhance the monitoring and understanding of jaguar populations by automating the identification process. The algorithms detect jaguars in camera-trap images and classify individuals, contributing to understanding population size, distribution patterns, and behaviors. This facilitates conservation planning and policy-making by decision-makers. Additionally, the models are scalable and can be adapted to other species and ecosystems, expanding their applicability beyond the Yucatán Peninsula.

Enabling factors:

  • Availability of high-quality camera-trap data for training and validating the algorithms.
  • Technical expertise in AI and machine learning for developing and fine-tuning models.
  • Collaborative partnerships with local institutions for field data collection and algorithm design, development and testing.
  • Access to sufficient computational resources to train and deploy the algorithms effectively.
  • High-quality and diverse datasets are critical for achieving accurate and reliable results.
  • Community and academic involvement, such as the participation of the Dzilam de Bravo community and the Universidad Politécninca de Yucatán, enhances project outcomes by ensuring local capacity and ownership, and technological expertise to design the necessary algorithms.
  • Explainability in AI models (e.g., through Gradient Cam) is essential to build trust and ensure the results are accessible to decision-makers.
Data Sources

The system combines data from drones, satellites, camera traps, and geospatial tools to create a comprehensive monitoring framework. This approach can be adapted for other environmental challenges, such as flood monitoring, by integrating relevant data sources specific to those contexts.

  • Reliable access to real-time data from sensors, satellites, drones, and cameras is critical.
  • High-quality sensors and data processing systems must be available to collect and analyze diverse data types.
  • Systems must use compatible formats to integrate data seamlessly.
  • Interconnectivity & interoperability of systems is crucial. 
  • The platform must be software and hardware agnostic.
  • Cybersecurity and intercommunication are crucial.
Establishing a satellite-based IoT communication system

Relevant ecological processes and incidents that are of interest in environmental change research typically occur in remote areas beyond the reach of terrestrial communication infrastructures. Data generated in the field using animal tags in these regions can often only be transmitted with a delay of days or even weeks. To overcome this delay and ensure no delay in the early-warning system, GAIA develops a satellite communication module for the tags as well as a nanosatellite operating in low earth orbit (LEO): In order to be able to transmit collected data and information directly from the transmitting node to the LEO satellite (Low Earth Orbit), a high-performance satellite IoT radio module will be integrated into the new tags. This guarantees immediate, secure and energy-efficient transmission of the extracted data. The communication system is based on the terrestrial mioty® technology and will be adapted to satellite-typical frequency bands such as L- and S-band for the project. Typical communication protocols, which are sometimes used in the IoT sector, are usually designed for small packet sizes. Further development of the mioty® system will therefore also aim to increase the data rate and message size to enable application scenarios such as image transmissions.

A significant share of the GAIA research and development was funded by the German Space Agency (DLR). This provided not only budgets for the development of the mioty® communication modules in the tags and first modules and concepts of the nanosatellites, but also access to an ecosystem of space-tech stakeholders. The start-up Rapidcubes became a key partner in the Initiative for the satellite development and plans for subsequent project phases include collaboration with existing DLR infrastructure such as the Heinrich Hertz satellite. 

The adaptation of the terrestrial mioty® protocols for satellite communication were successful. With the Ariane 6, an experimental nanosatellite was launched into a low earth orbit in July 2024. Since then, communication protocols are tested and refined for future application for the GAIA early-warning system.