Drone Data

Drones play a pivotal role in the 3LD-Monitoring system, complementing other data collection methods.Drones are essential tools in partner countries to fortify technical skills among local staff. These skills encompass flight planning, navigation and image evaluation. The drone monitoring aims to empower project staff to capture data tailored for photogrammetric analyses, from which crucial geoinformation emerges.

The drone mapping methodology encompasses five stages, with the first two focusing on drone operations:

 

  1. Mapping mission preparation (desktop work)
  2. Mapping mission execution (fieldwork)
  3. Development of Digital Surface Model (DSM) & Orthomosaic generation (desktop work)
  4. Data analysis and refinement (desktop work)
  5. Integration into the prevailing data system (desktop work)

 

Drone data aids in evaluating indicators linked to carbon/biomass, such as mortality rates and forest types. Notably, with the application of allometric equations and proper characterization of the land type, above-ground biomass estimations of trees can be determined.

Drones with pre-set flight planning capability ensure seamless orthophoto creation from individual images. This enables individual snapshots to seamlessly merge into an orthophoto (aerial photograph corrected for distortions, allowing accurate measurements). It's also vital to consider the availability of these drones in the local markets of partner countries. Leveraging local knowledge by involving local academia is paramount in this process. They can provide essential allometric equations, grounded in tree height, that facilitate precise biomass calculations.

Drones generate high resolution images, allowing a detailed overview of land cover changes, tree survival and erosion rates, among others. Combined with field data, drone-based monitoring is strengthened, guaranteeing a sound monitoring.

 

The heterogeneity of trees and vegetation density often hinders a sound extraction of common key points between the images, which is necessary to estimate the heights and other indicators. In this regard, increasing the overlap between images to a minimum of 85 % frontal and side overlap can improve the extraction of key points. Also, increasing the flight height of the drone reduces perspective distortion, which facilitates the detection of visual similarities between overlapping images. However, too much overlapping, i.e., high overlapping percentages result in higher amount of data, making data processing more time intensive.

 

Another aspect already mentioned is the availability of suitable drones in the partner countries. Importing drones to the respective countries is difficult, and bureaucratic barriers persist.

Satellite Data

Satellite data forms the bedrock of the 3LD-Monitoring system, harnessing the capabilities of open-source imagery from the Copernicus Sentinel-2 and LANDSAT satellites. An algorithm, meticulously developed by Remote Sensing Solutions (RSS) GmbH, revolutionizes this process. Users can seamlessly submit the shapefile of their area of interest, prompting the algorithm to automatically fetch and analyze relevant data. A spectrum of robust analyses are conducted including the 5-year vegetation trend using NDVI for assessing vegetation gains or losses, 5-year vegetation moisture analysis through NDWI, and a nuanced 5-year rainfall trend evaluation. Additionally, the algorithm facilitates the visualization of vegetation changes since the inception of the project, bolstering the monitoring framework with dynamic insights. Satellite data, a vital component of the 3LDM-Monitoring system, leverages open-source imagery from the Copernicus Sentinel-2 mission and LANDSAT satellites. For predefined areas, this data is automatically fetched and analyzed for specific parameters. Key analyses include a 5-year vegetation trend using NDVI as a proxy for vegetation gains or losses, a 5-year vegetation moisture trend through NDWI, and a 5-year rainfall trend. In addition vegetation changes from project start can be visualized.

Effective use of this building block hinges on users drawing and saving areas in GIS platforms like QGIS. Additionally, enhancing the shapefile with project specifics, such as start dates and FLR type, optimizes analysis. Proper training in these skills ensures accurate data input and tailored monitoring, making capacity building in these areas essential if not present.

While satellite data, especially open-source, offers broad insights, its capability for species identification is highly restricted, if not unattainable. This limitation emphasizes the indispensable role of field work in discerning species composition and characteristics. Additionally, understanding the innate constraints of satellite imagery, especially with young tree plantations, reinforces the need for integrating field and drone data to gain a comprehensive view of forest terrains.

Bird-NBS
East Europe
Boglárka
Amrein Tamásné Miskolczi
Bird-NBS
East Europe
Boglárka
Amrein Tamásné Miskolczi
Efficient Monitoring, Reporting and Verification (MRV) system

Compared to similar carbon projects in agriculture, the Western Kenya Soil Carbon Project piloted an efficient Monitoring, Reporting and Verification (MRV) system. By using a modelling approach instead of pure activity monitoring, monitoring costs of the scheme could be decreased significantly. Also, the pilot uses digital monitoring tools (app), which makes the MRV more efficient. The digitalized MRV system provides the potential to integrate commodity market platform access for smallholder farmers. 

Sufficient financial resources to ensure the availability of digtial tools are important. Moreover people need to be available in the field to introduce farmers to the digital tools like apps and help with problems and questions. A coordination entity to supervise this but also the whole MRV process and its quality is thus a key component.

Increasing the efficiency of carbon schemes requires reduction of transaction costs, for example by applying satellite-based SOC monitoring or digital extension service support systems. To improve partner countries' national climate MRV system efficiency, it is recommended to link carbon projects MRV to national carbon registries. 

Baseline

The baseline refers to the projection of greenhouse gas (GHG) emissions that would occur in a specific project area if no interventions or changes to current practices are implemented. This serves as a point of comparison to assess the effectiveness of the carbon project in reducing emissions.

The baseline is essential for calculating the actual carbon reductions attributable to the Capercaillie project and to measure the project’s impact on mitigating climate change.

The baseline sets the benchmark for assessing the carbon reduction achievements of the project and is therefore highly relevant for the issuance of CO2 certificates. Especially demanding is the forecast of the developement in a given area over long periods of time, which plays a crucial role on the amount of CO2 certificates issued. The long term protection goal in protected and conserved area is therefore a important advantage for the long term sequestration of CO2 equivalents. 

Long-term sequestration

Long-term sequestration refers to the practice of capturing, securing, and storing  greenhouse gas (GHG) or other forms of carbon from the atmosphere for an extended period of time, ideally indefinitely.

The goal of long-term sequestration is to mitigate the effects of climate change by reducing the levels of CO2 and other greenhouse gases in the atmosphere.

It is important that the used methods are sustainable and secure to ensure that the carbon does not re-enter the atmosphere. In this pilot, we reached that goal through using the wood for construction purposes in the area near the forest reserve. 

Long-term sequestration is essential for stabilizing global carbon levels and is considered a crucial component in efforts to combat climate change, but to identify and secure the long term storage of CO2 in construction sites is a large task and costly exercise. 

Additionality

In carbon offset projects, additionality is crucial for determining the quality of carbon offset credits. A project is said to be "additional" if its associated greenhouse gas (GHG) reductions would not have occurred without the specific intervention, thereby ensuring the credibility and effectiveness of the carbon credits issued.

Additionality is respected if the cut would not have been done without the financial contribution of the issued CO2 certificates.

As the cut was already executed and the calculation was done retrospective, this condition was not respected in the examined Pilot project. But if the cut is done for biodiversity reasons and the resulting CO2 certificates are used to finance the cut or increase the managed surface, then this condition would be respected.

Members Area

The members area is exclusive for registered members (individuals or organisations) of the Alliance. The membership is free of charge and gives you the chance to join forces for a common cause as well as connect, collaborate and partner with other members.

The Members Area serves as a platform for internal exchange, sharing of interesting articles, job opportunities and event dates as well as having access to video recordings of past events on demand.

  • maintaining the website and members area
  • it needs motivated and committed members who are willing to actively participate on the platform

At the beginning of the implementation, direct and regular contact with members is necessary to encourage them to post and interact with each other. Direct inquiries via email or reminders in the newsletter can help. Active support for posting from the secretariat is initially necessary but can be reduced over time.

Working Groups

The International Alliance currently has 3 Working Groups, which are led by the members themselves and receive support from the Alliance Secretariat. Each Working Group is led by 1-2 chairs and the group meets every 6-8 weeks to ensure a continous work process.

We currently have the following Working Groups:

 

- Science Policy Interface (chair: Sue Liebermann, WCS)

Considering our core understanding of wildlife we want to infuse this understanding, based on scientific evidence, into international political processes.

 

- Transformative System Change: The Big Picture (chair: Alex D. Greenwood, IZW Berlin; Barabara Maas, NABU)

There are underlying fundamental obstacles to achieving the Alliances objectives and goals. Identifying and addressing these is the focus of this Working Group. 

 

- Evaluation/Effective Interventions (chair: Craig Stephen, One Health Consultant)

The aim is to gather good practices on effective interventions from Alliance members to enable learning and knowledge exchange across sectors and regions. 

The success of the working group depends on whether clear goals have been formulated, how committed and well- organized the chair is, how motivated the group members are and whether there is a continuous workflow.

Since most members already have very demanding full-time jobs, the time capacity of individual members may change over time. It can be challenging to ensure a good workflow and working atmosphere. Appreciation and understanding are of great importance in order to enable further collaboration.