Estimating total length of crocodylians from drone-captured images by using a model

Understanding the demographic structure is vital for wildlife research and conservation. For crocodylians, accurately estimating total length and demographic class usually necessitates close observation or capture, often of partially immersed individuals, leading to potential imprecision and risk. Drone technology offers a bias-free, safer alternative for classification. This study evaluated the effectiveness of drone photos combined with head length allometric relationships to estimate total length, and propose a standardized method for drone-based crocodylian demographic classification. 

An allometric framework correlating head to total length for 17 crocodylian species was developed, incorporating confidence intervals to account for imprecision sources (e.g., allometric accuracy, head inclination, observer bias, terrain variability).This method was applied to wild crocodylians through drone photography. Terrain effects were less impactful than Ground Sample Distance (GSD) errors from photogrammetric software. The allometric framework predicted lengths within ≃11–18% accuracy across species, with natural allometric variation among individuals explaining much of this range. Compared to traditional methods that can be subjective and risky, our drone-based approach is objective, efficient, fast, cheap, non-invasive, and safe.

Standardized Drone Survey Protocols

This building block establishes standardized flight parameters for effective crocodilian monitoring

Crocodiles can be closely approached (.10 m altitude) and consumer-grade drones do not elicit flight responses in West African large mammals and birds at altitudes of 40–60 m. Altitude and other flight parameters did not affect detectability, because high-resolution photos allowed accurate counting. Observer experience, field conditions (e.g. wind, sun reflection), and site characteristics (e.g. vegetation, homogeneity) all significantly affected detectability. Drone-based crocodylian surveys should be implemented from 40 m altitude in the first third of the day. Drone surveys provide advantages over traditional methods, including precise size estimation, less disturbance, and the ability to cover greater and more remote areas. Drone survey photos allow for repeatable and quantifiable habitat assessments, detection of encroachment and other illegal activities, and leave a permanent record. 
Overall,dronesofferavaluableandcost-effectivealternative forsurveyingcrocodylianpopulationswith compelling secondary benefits, although they may not be suitable in all cases and for all species

Methodology
  • Involvement of the local community
  • Responding to community needs 

The openness of the community to learn and adopt the toolkit.

The financial support for the project.

The effectiveness of the toolkit in deterring the wildlife from farms. 

Village Crop Protection Team
East and South Africa
Elizabeth
Mintoi
Methodology
Livelihood Improved
Capacity Building for Governance Improvement
Funding and professional development training

For many conservationists, including our participants, the knowledge to effectively use conservation technology is not enough without the funding to access the tools. Recognizing this barrier, we provide each participant with $500 USD in seed funding to help them implement their conservation solutions. Additionally, we offer training in grant writing, pitching, and engaging with funders to enhance their ability to secure future funding.

  • Support from donors who fund seed grants 
  • Students are required to submit two updates and a financial report for their grant. Ensuring follow-up on these submissions requires dedicated effort and engagement from the core team  
  • Students have reported that being able to list the seed funding received through our program on their CVs has helped them secure additional funding opportunities in the future.
Hands-on engagement

For our technical training, we prioritize activities that allow students to directly interact with conservation technology tools. By setting up and deploying tools in safe, low-pressure environments, students have the opportunity to make mistakes and learn from those experiences. For example, letting students decide where to place a camera trap based on a lesson, and then evaluating the effectiveness of their decision by reviewing the data collected, is highly valuable. 

  • Access to technology tools at host institution for practical use 
  • Opportunities for students to trial and test tools themselves
  • Experience instructors to provide guidance and support 
  • When paired with supporting background information, we have found these hands-on experiences to be more impactful than traditional lectures or merely observing technology in use 
  • Providing opportunities to engage with the entire lifecycle of a technology (e.g., from set up and deployment to data collection and analysis) better prepares students for using these technologies in their own projects
Focus on early career potential

We select participants who are at the beginning stages of their careers, such as those who have completed their bachelor’s degrees and are entering the NGO or conservation workforce or embarking on higher education.The goal is to identify participants whose careers would benefit the most from the type and amount of training, funding, mentorship, and support we provide. 

  • Strong networks with local academic institutions and regional NGOs help us attract a large pool of qualified applicants (~200 applications per year)
  • Tailored educational materials that align with the needs of early-career participants
  • Community of same-stage participants form strong and enduring connections 
  • Initially, we included participants at various career stages, but we found that older, more experienced individuals have different needs and require a distinct program tailored to their experience level
  • Our entry-level training materials were less useful for women with more experience in the field
  • Over the past two years, we’ve recruited at least one participant without formal education but with extensive on-the-ground experience. These individuals have thrived in the program, highlighting an opportunity to further cater to this audience in future iterations.
Core training materials

To support our upskilling objectives across different contexts, we have developed a core portfolio of training materials. These materials focus on teaching fundamental competencies and are organized into themed modules (e.g., wildlife protection, human-wildlife conflict). Depending on the local context, we select the most relevant modules and training topics. Our locally recruited mentors and trainers are then encouraged to adapt these materials based on their specific expertise and background.

  • Multiple years of programming have allowed us to refine and improve our training materials
  • Annual participant feedback helps guide the development of new topics 
  • Host institutions and local partners provide valuable input on the most relevant training needs
  • Asking local trainers develop their own materials often exceeds their time and capacity 
  • Using standardized materials ensures consistency and reduces variability in the type and depth of content delivered
Mentors, trainers, and allies

Our goal is that our core portfolio of standardized training materials are delivered by female experts recruited from the local region, who we further engage in mentoring and leadership activities. By centering these role models throughout our programming, we provide our participants with a vision of their future careers. We strive to foster an inclusive environment for honest dialogue and encourage ongoing mentorship even after the program concludes. However, the very gender gap we aim to address often presents a challenge when it comes to recruiting female educators and role models for our programs. This situation has helped us to differentiate three leadership roles: “mentors” (female role models, who participate in training and mentorship), “allies” (male trainers and facilitators), and “trainers” (support from international organizing team). Participation of each to these types of individuals is critical to develop and support our participants.

  • Keen interest from female leaders to foster the next generation of conservationists, including willingness to engage honestly in vulnerable conversations and provide career advice 
  • Growing interest from allies to support development of women in their field and organizations 
  • Funding to support attendance and honorarium for high-quality mentors and allies 
  • We have established a code of conduct and set clear expectations up-front on how mentors and allies should engage with students during and after the program 
  • Mentors and allies with a background in training as well as expertise in conservation tech are preferred 
  • Wherever possible, we seek a combination of mid-career and established mentors, who can speak to participants about different stages of the conservation career journey 
  • Male allies need to be carefully selected to create a supportive, safe environment 
  • We maintain and cultivate female-only spaces at the workshop where male allies and trainers are not allowed 
Local partners and host institutions

This program aims to equip women with practical skills that are actionable within their local context, enabling them to seize opportunities such as funding and career advancement within their specific regions. To achieve this, we collaborate closely with local partners and host institutions to adapt our core training materials, ensuring they align with local challenges, processes, and institutions. By tailoring our trainings to address the unique needs and contexts of the women we support, we maximize the relevance and impact of our programming. 

  • Local partners with aligned visions in education, upskilling, and empowerment 
  • On-the-ground support from women within the host and collaborating organizations 
  • Networks of experienced local educators and trainers in the conservation technology space  
  • Educational systems vary significantly, even across countries in the same region. For example, certain types of trainings or activities - such as active learning approaches - may be more difficult for students from countries where education is centered on rote memorization. Understanding local learning preferences and adapting teaching methods accordingly can support deeper engagement. 
  • Certain technologies or methodologies, such as drones or cloud-based data storage, may be prohibited or prohibitively expensive in some. Partnering with local conservation technology experts ensures that we focus on accessible, actionable technologies for our participants.