Drone crocodile surveys
West and Central Africa
North Africa
East and South Africa
Caribbean
Central America
South America
North America
Southeast Asia
South Asia
Oceania
Clément
Aubert
1) Standardized Drone Survey Protocols
2) Estimating total length of crocodylians from drone-captured images by using a model
3) Allometric Framework for Crocodilian Size Estimation
4) Empowering Local Stakeholders through Drone Technology
5) Evolution of on-board technologies and AI integration
Cost-Effective Restoration Processes

One of the biggest barriers to large-scale restoration is cost. Our solution eliminates the need for costly nurseries and reduces labor-intensive efforts, enabling efficient large-scale planting. The drones can plant up to 2,000 seeds in under 10 minutes, drastically reducing time and labor costs. This affordability makes restoration feasible for low-income regions and opens up opportunities for scaling in areas previously deemed inaccessible. The process is adaptable to other restoration challenges, such as reforestation or agricultural regeneration, making it versatile across multiple applications.

AI-Powered Monitoring, Reporting, and Verification (MRV) System

Restoration is not just about planting—it’s about ensuring long-term impact. Our AI-powered MRV system provides real-time tracking of restoration progress and environmental health. It also addresses critical issues like illegal fishing, poaching, and deforestation, empowering communities to protect their restored ecosystems. This system integrates satellite data, drone imagery, and AI analytics to provide actionable insights, which can be adapted to other restoration or conservation efforts. It also supports transparency and accountability, ensuring stakeholders can measure progress and outcomes effectively.

Licensing and Training Platform

Our licensing and training platform equips communities to independently build, operate, and maintain drones. This approach is hands-on and collaborative, fostering local expertise and enabling communities to adapt the technology to their unique needs. The platform goes beyond technical skills, creating a foundation for communities to innovate and modify drones for additional applications such as surveillance, mapping, and precision agriculture. Importantly, the platform fosters a feedback loop where communities share their innovations, enriching the broader global network of users.

Modular Drone Technology

Our modular drones are designed for accessibility, adaptability, and sustainability. Initially crafted using wooden components with fewer than six screws and zip ties, they are simple to assemble, repair, and replicate using local materials, empowering communities to lead restoration projects independently.

As we’ve advanced, we’ve integrated hydrogen fuel cells and hybrid-electric propulsion systems, enhancing flight endurance, energy efficiency, and environmental sustainability. These innovations enable drones to cover larger areas and operate in remote environments while reducing their carbon footprint.

The modular design ensures flexibility for continuous adaptation, allowing communities to upgrade drones with tools like cameras or sensors for monitoring. This approach combines simplicity and cutting-edge innovation, bridging grassroots empowerment with scalable, impactful environmental restoration.

DIS drone
East and South Africa
Caribbean
Central America
South America
West Asia, Middle East
Southeast Asia
South Asia
East Asia
Oceania
Jane
Glavan
Modular Drone Technology
Licensing and Training Platform
AI-Powered Monitoring, Reporting, and Verification (MRV) System
Cost-Effective Restoration Processes
DIS drone
East and South Africa
Caribbean
Central America
South America
West Asia, Middle East
Southeast Asia
South Asia
East Asia
Oceania
Jane
Glavan
Modular Drone Technology
Licensing and Training Platform
AI-Powered Monitoring, Reporting, and Verification (MRV) System
Cost-Effective Restoration Processes
Methodology
  • Involvement of the local community
  • Responding to community needs 

The openness of the community to learn and adopt the toolkit.

The financial support for the project.

The effectiveness of the toolkit in deterring the wildlife from farms. 

Unlocking future impact: Funding and professional development

For many conservationists, including our participants, the knowledge to effectively use conservation technology is not enough without the funding to access the tools. Recognizing this barrier, we provide each participant with USD$500 in seed funding to support the implementation of their conservation solutions. Participants are required to propose and carry out projects, which have ranged from building predator-proof bomas and underwater camera traps to developing AI tools, mobile apps, and community-driven citizen science initiatives. Each participant is required to report on their project’s progress over the following year, fostering accountability and impact tracking.

To ensure long-term sustainability, we also deliver training in grant writing, proposal development, and funder engagement to equip participants with the skills needed to secure sustained future funding. Ongoing mentorship and support also continue beyond the initial training. Our team, along with a growing alumni network, provides guidance on grant applications, reference letters, and professional development opportunities. Many of the projects and collaborations initiated during the program have led to graduate study, published research, and conference presentations, reinforcing participants’ continued growth as conservation leaders. 

  • Support from donors who fund seed grants
  • Ongoing dedication and investment of trainers and mentors
  • Students are required to submit two updates and a financial report for their grant. Ensuring follow-up on these submissions requires dedicated effort and engagement from the core team 
  • Students have reported that being able to list the seed funding received through our program on their CVs has helped them secure additional funding opportunities in the future.
Focusing on hands-on engagement

Our technical training emphasizes experiential learning by giving participants direct, practical experience with conservation technologies. Whenever possible, students are encouraged to set up and deploy tools themselves in safe, low-pressure environments, creating space to experiment, make mistakes, and learn by doing. For instance, students may choose camera trap locations based on the classroom training module, then evaluate the effectiveness of their decisions by analyzing the resulting data. This process helps bridge theory and practice while building confidence in problem-solving and tool use.

In cases where participants cannot operate the tools directly, trainers and field practitioners from host institutions provide live demonstrations, such as tracking wildlife using GPS or operating drones, ensuring students still gain exposure to how these technologies function in real-world conservation settings.

  • Access to technology tools at host institution for practical use 
  • Opportunities for students to trial and test tools themselves
  • Experience instructors to provide guidance and support 
  • When paired with supporting background information, we have found these hands-on experiences to be more impactful than traditional lectures or merely observing technology in use 
  • Providing opportunities to engage with the entire lifecycle of a technology (e.g., from set up and deployment to data collection and analysis) better prepares students for using these technologies in their own projects