Reintroducing the Salmon to Its Historical Habitats (Ex-Situ Conservation)

Following habitat restoration efforts, including the removal of silt traps and reforestation along riverbanks, the salmon were reintroduced to five historical streams. Technologies, such as mini radio transmitters, were used to track the salmon’s behavior and assess the suitability of their restored habitats.

  • The Formosan landlocked salmon is a keystone species in stream ecosystems, with its presence helps maintain ecological balance. Restoring populations in historically distributed areas promotes the integrity and stability of local ecosystems.
  • The three-phase goal set at the 2000 Formosan Landlocked Salmon Conservation Research Symposium aims to restore its natural habitats, expand the species' natural distribution range, and reduce survival risks posed by issues like climate change.
  • The 2005 Wuling Stream Long-Term Monitoring Integrated Plan (2005-2013) involved monitoring habitats and species prior to the silt trap improvement plan, laying the groundwork for the restoration of ecosystem balance.
  • In 2017, a cross-regional collaboration with Taroko National Park enabled the release of Formosan landlocked salmon into Hehuan and Nanhu rivers, which are at higher elevations than the Qijiawan River.
  • Releasing salmon into different streams and different sections of the same stream fosters evolutionary diversity, contributing to the genetic diversity of the Formosan landlocked salmon.
  • In October 2023, a breakthrough in reintroduction techniques overcame the challenge of transporting fish over long distances. Through waterless transport, the eggs were transported and reintroduced into the upper reaches of Nanhu River, at an altitude of 2,200 meters in Zhongyangjian River.
  • In 2004, Typhoon Aere brought heavy rains and landslides that destroyed the hatchery along the Qijiawan River. The previous efforts were washed away, causing a 2–3-year disruption in the off-site conservation work. However, researchers and conservationists, equipped with prior experience, remained determined to persist in their efforts. To mitigate the impact of future extreme weather events, they also began releasing salmon into multiple streams, dispersing the risks associated with such climatic challenges.
Comprehensive life-cycle breeding program (Ex-Situ Conservation)

A comprehensive artificial breeding program was established over four years, producing 10,000 fish annually for conservation and reintroduction. Challenges included low genetic diversity and habitat-specific requirements.

  • A gene bank was established based on the concept of Noah’s Ark, aimed at increasing the population of the Formosan landlocked salmon through artificial breeding.
  • In 2000, the Formosan Landlocked Salmon Conservation Symposium was held, where a comprehensive conservation framework was developed. The goal was to gradually restore the five historical streams in the upper Dajia River, where the salmon originally thrived, within 30 years. A dual strategy of in-situ (on-site) and ex-situ (off-site) conservation was adopted.
  • Purely artificial breeding methods can reduce genetic diversity, so it is essential to establish a complete and sustainable breeding program.
  • There is limited experience in reintroducing endangered species, making it crucial to understand the life history and habitat requirements of the Formosan landlocked salmon. 
The Establishment of Shei-Pa National Park in 1992

Shei-Pa National Park has included the Qijiawan River catchment in its protected area, with conservation plans focusing on habitat preservation and breeding programs.

  • The Formosan landlocked salmon, discovered in 1917, is a unique species that is considered a "glacial relict." It is found exclusively in the high-altitude streams of central Taiwan, marking the southernmost and highest-altitude wild distribution of any salmon species in the world. This species is regarded as a natural monument and an iconic national treasure.
  • By 1984, the Formosan landlocked salmon was nearly extinct, with 90% of its historic range across five streams reduced, leaving only about 200 individuals.
  • In 1989, the Wildlife Conservation Act was enacted, listing the Formosan landlocked salmon as an endangered species (EN), signaling the urgent need for conservation.
  • During Taiwan's economic miracle in the 1960s to 1980s, human development spread to the mountains, leading to overfishing, water pollution, and habitat destruction. To conserve the Formosan landlocked salmon, the Wildlife Conservation Act was enacted, and Shei-Pa National Park was established to strengthen protection efforts.
Committee establishment, formalization and operationalization

Inclusive and participatory mapping of all stakeholders in the mangrove space in the five counties of Kwale, Mombasa, Kilifi, Tana River and Lamu. A series of meetings for sensitization on the National Mangrove Management Plan, and later facilitated formation of the national and five county committees. The committees were then facilitated in developing their workplans and executing some of the activities. This has since been picked up. 

Partnership and collaboration.

Inclusive processes

Willingness and trust amongst partners 

Good Governance

Good governance is essential for the sustainable growth of Randilen Wildlife Management Area (WMA). Effective leadership, transparency, and accountability ensure that tourism revenues are managed efficiently, benefiting both conservation efforts and local communities. Strong governance structures help in decision-making, equitable distribution of resources, and the enforcement of policies that protect wildlife and natural habitats. By fostering community participation and fair representation, Randilen WMA can enhance trust among stakeholders, attract more investment, and promote long-term sustainability. Ultimately, good governance ensures that conservation and development go hand in hand, securing a prosperous future for both people and nature.

 

 

 

 

Clear communication channels among stakeholders.

Stakeholder commitment to transparency and accountability.

  • Developement suppose to reach the community and it is only possible with good governce in place 

     

use AI

To preserve natural resources, artificial intelligence must be introduced to preserve them, and automation must be used to preserve environmental diversity by linking to the use of the Internet today, which is everywhere, controlling it, and following up. It was made into a real reserve and controlled using connected surveillance cameras. Transporting animals to a safe environment protected by surveillance cameras to reduce poaching.

Implementation of adaptive livestock management strategies on farms adjacent to water source protection forests and public and private reserves

Due to their location near forests that protect water sources and public and private reserves, many agricultural productions are vulnerable to human-wildlife conflicts (HWCs). This vulnerability, combined with a lack or inadequacy of farm planning and the prevalence of outdated livestock management practices, puts at risk productivity in these mountain systems, biodiversity conservation, water resources, and associated ecosystem services

We include renewable energy technologies such us solar panels  to power electic fences, improve livestoc water availability and sensored lights to mitigate economical loses in livestoc farms caused by predation over domestic animales, at the same time, we help rural farmer families to access electricity serveces and improve their food productivity, economicla and food founts

Funding availability
Landowners willingness to include new technologies in their agricultural system
Adaptive livestock management strategies designed collaboratively with agricultural extension units, local small-scale farmers, and other professionals with relevant experience.

The predation of domestic animals by wild predators has been addressed by local authorities and external foundations as a technical issue, through the implementation of “anti-predation strategies” such as electric fences, corrals, and other protective measures. However, these actions are rarely monitored for effectiveness or continuity and often end with the conclusion of contracts with private implementing entities. Our experience has shown that these measures are more effective when focused on improving farm productivity and the quality of life of small-scale farmers, based on the specific context of each property. Furthermore, monitoring and evaluation are more sustainable and efficient when carried out by local actors such as agricultural extension units, environmental authorities, and community-based organizations, increasing the likelihood of long-term success and continuity of these strategies.

We have implementing replicable technological strategies to mitigate economical losses by wild felids predation reaching a reduction of the 100% of attacks from cougar and jaguar over cattle in the Cerro El Inglés Communitary reserve, protecting vulnerable individuals by solar powered electric fences and motion-sensor lights and limiting the access of domestic animals to the forest by technifying water provision for livestock and solar powered electric fences. Having a demonstrative and replicable system used for education purposes with farmers from the region.

Applying a behavior change approach to address human dimensions related to jaguars in strategic areas where the species is present

According to IUCN guidelines for coexistence with wildlife, educational approaches are more effective when focused on promoting behavioral change towards wildlife. This can be achieved through well-designed processes targeting key stakeholder groups and addressing specific actions—such as the killing of jaguars or their potential prey, or the implementation of changes in production systems—within a defined time frame.

This approach is grounded in the Theory of Planned Behavior, which posits that human actions are influenced by intentions, which in turn are shaped by attitudes, subjective (or social) norms, and perceived behavioral control.

Our objective is to develop educational strategies for jaguar conservation that focus on these three key determinants of human behavior. In this way, we aim not only to ensure structural but also functional connectivity for the jaguar by promoting a culture of coexistence with other forms of life

  • Identification of key stakeholders
  • Informed consent from the community
  • Appropriate public order conditions to ensure participants' safety

Most environmental education approaches developed in the territory to address human–wildlife conflicts (HWCs) have focused on providing information about the ecology of wild cats and promoting short-term deterrent methods. However, these activities have shown limited contribution to fostering long-term coexistence. In contrast, experiences that involve more in-depth processes—such as the active participation of local community  in wildlife monitoring and the implementation of adaptive livestock management strategies on private reserves—have demonstrated positive effects on behavioral change, particularly among former hunters.

Implementation of community-based monitoring of jaguars and ,mammal diversity using camera traps

We develop wildcats and potential prey community based monitoring with the families associated with Serraniagua in their private natural reserves by employing a small set of five trap cameras.

Natural reserve land owners willingness to develop monitoring activities within their lands
Trap cameras availability, this is a limited resouce for our organization 
Financial resources availability
Public Order
Favorable climatic conditions

Through community-based biodiversity monitoring, many new, endemic, and/or endangered species of plants, amphibians, reptiles, birds, and mammals have been recorded, contributing to scientific knowledge and the implementation of technologies that support wildlife identification and habitat conservation.

A notable result of this effort is the documentation of six out of the seven felid species of Colombia within the area, including the rediscovery of the jaguar in the Andean region of Valle del Cauca, Colombia. Antonio, identified as an individual preying on livestock, has been tracked, revealing a movement route. We intend to explore this route as a landscape management strategy by implementing a robust trap camera monitoring program to identify potential anthropogenic impacts on wild mammals.

Development of a transdisciplinary plan for managing human–jaguar interactions at the regional scale in the DRMI Serranía de los Paraguas

Both the expansion of agricultural systems and the declaration of new public and private protected areas contribute to the intensification of HWCs. In this context, the development of regional plans that address territory-specific problems and contexts, and integrate all relevant stakeholders, will enable a preventive,comprehensive and sustainable management of human–jaguar interactions, improving quality of life for both people and jaguars

  • The stakeholders are willing to work together
  • Protected areas management groups including comunity based, agrucultural, gender based, and government authorities at regional and local scale working together to make management plans
  •  Fund finding: The co management cometee works together to find financial and technical support to handle with HWI within protected areas 
  • Local initiatives with a bottom-up approach are prioritized over top-down initiatives that favor the interests of companies external to the territory.

National funding sources have primarily supported top-down initiatives, with plans designed outside the territory by external groups. Through a bottom-up approach, an initial pathway has been developed to address level 1 HWCs, involving environmental authorities, agricultural extension units, and grassroots farmer organizations. This has facilitated the collection of reports on jaguar presence and attacks on domestic animals, enhancing our understanding of how jaguars use the territory. Between September and November, the group designed a pilot regional community-based monitoring of wild mammals using trap cameras (TC) within water resource conservation areas and private reserves, recording Antonio after two years since his last sighting. In 2025 (or 2026).

We aim to expand our planning to a more operational and administrative scale through the Plan4Coex approach, building on the positive partial results achieved so far.