Unlocking future impact: Funding and professional development

For many conservationists, including our participants, the knowledge to effectively use conservation technology is not enough without the funding to access the tools. Recognizing this barrier, we provide each participant with USD$500 in seed funding to support the implementation of their conservation solutions. Participants are required to propose and carry out projects, which have ranged from building predator-proof bomas and underwater camera traps to developing AI tools, mobile apps, and community-driven citizen science initiatives. Each participant is required to report on their project’s progress over the following year, fostering accountability and impact tracking.

To ensure long-term sustainability, we also deliver training in grant writing, proposal development, and funder engagement to equip participants with the skills needed to secure sustained future funding. Ongoing mentorship and support also continue beyond the initial training. Our team, along with a growing alumni network, provides guidance on grant applications, reference letters, and professional development opportunities. Many of the projects and collaborations initiated during the program have led to graduate study, published research, and conference presentations, reinforcing participants’ continued growth as conservation leaders. 

  • Support from donors who fund seed grants
  • Ongoing dedication and investment of trainers and mentors
  • Students are required to submit two updates and a financial report for their grant. Ensuring follow-up on these submissions requires dedicated effort and engagement from the core team 
  • Students have reported that being able to list the seed funding received through our program on their CVs has helped them secure additional funding opportunities in the future.
Focusing on hands-on engagement

Our technical training emphasizes experiential learning by giving participants direct, practical experience with conservation technologies. Whenever possible, students are encouraged to set up and deploy tools themselves in safe, low-pressure environments, creating space to experiment, make mistakes, and learn by doing. For instance, students may choose camera trap locations based on the classroom training module, then evaluate the effectiveness of their decisions by analyzing the resulting data. This process helps bridge theory and practice while building confidence in problem-solving and tool use.

In cases where participants cannot operate the tools directly, trainers and field practitioners from host institutions provide live demonstrations, such as tracking wildlife using GPS or operating drones, ensuring students still gain exposure to how these technologies function in real-world conservation settings.

  • Access to technology tools at host institution for practical use 
  • Opportunities for students to trial and test tools themselves
  • Experience instructors to provide guidance and support 
  • When paired with supporting background information, we have found these hands-on experiences to be more impactful than traditional lectures or merely observing technology in use 
  • Providing opportunities to engage with the entire lifecycle of a technology (e.g., from set up and deployment to data collection and analysis) better prepares students for using these technologies in their own projects
Strengthening early career potential

We select participants who are at the beginning stages of their careers, such as those who have completed their bachelor’s degrees and are entering the NGO or conservation workforce or embarking on higher education.The goal is to identify participants whose careers would benefit the most from the type and amount of training, funding, mentorship, and support we provide. Over the past two years, we’ve recruited at least one participant from a non-academic background who nevertheless possesses extensive on-the-ground experience. These individuals have thrived in the program, highlighting an opportunity to further cater to this audience in future iterations.

  • Strong networks with local academic institutions and regional NGOs help us attract a large pool of qualified applicants (~200 applications per year)
  • Tailored educational materials that align with the needs of early-career participants
  • Community of same-stage participants form strong and enduring connections 
  • Initially, we included participants at various career stages, but we found that older, more experienced individuals have different needs and require a distinct program tailored to their experience level
  • Our entry-level training materials were less useful for women with more experience in the field
Forming partnerships with local institutions

Host institutions are selected based on their capacity to support both classroom and field-based instruction, and on their engagement with active conservation challenges where technology plays a meaningful role. For instance, the RISE Grumeti Fund in Tanzania is an ideal training site, offering educational facilities, student accommodations, and running active, tech-enabled initiatives such as anti-poaching and rhino protection programs.

Furthermore, we prioritize institutions that share our commitment to advancing education for women and early-career conservationists, have strong ties to local conservation and research communities, and demonstrate leadership in integrating technology into conservation practice. These partnerships are essential to ensuring our program is both sustainable and deeply embedded in the communities it aims to serve.

  • Local partners with aligned visions in education, upskilling, and empowerment
  • On-the-ground support from women within the host and collaborating organizations
  • Networks of experienced local educators and trainers in the conservation technology space 
  • Host institutions with strong ties to local conservation, research, and government networks are best positioned to identify and recruit experienced female professionals to serve as trainers and mentors.
  • Institutions that already manage other training programs often have existing infrastructure and logistical systems in place, making them well-equipped to support student cohorts.
  • Sites where a wide range of conservation technologies are actively in use offer students valuable, hands-on exposure to tools in real-world settings.
  • A shared commitment to the program’s vision, particularly around gender equity and empowerment, is essential to creating a safe, supportive environment where women can build community, grow professionally, and develop leadership skills.
Academic Communication

Project findings were disseminated through multiple academic and public platforms, including:

  • An academic article in Ocean-Land-Atmosphere Research (a Science Partner Journal).
  • Featured content on the AAASScience WeChat Public Platform, the official media of the American Association for the Advancement of Science in China.
  • A case study contribution to the Yangtze River Delta Pilot Site.
  • Integration into major NSFC-supported oceanographic research projects.

GBF Alignment: Aligns with GBF Target 20.
Contribution: Enhances global conservation efforts by sharing scalable methodologies.

 

  • Transparent communication of challenges and methodologies enhanced engagement across disciplines.
  • Systematic presentation to stakeholders increased awareness and facilitated practical application.
  • Open and accessible dissemination promotes interdisciplinary collaboration and global knowledge sharing.
  • Publishing actionable insights in both scientific and public domains accelerates their translation into conservation practices.
Academic Communication

Results were disseminated via an academic paper in Ocean-Land-Atmosphere Research (a Science Partten Journal) and shared in AAASScience WeChat Public (Official Media of American Association for the Advancement of Science in China). The findings were also included as a case study in the Yangtze River Delta Pilot Site and included in the support of major research projects on oceanography by the National Natural Science Foundation (NSFC).

By systematically integrating remote sensing data, deep learning, and ecological analysis, the project has significantly advanced wetland conservation methodologies, offering scalable solutions for biodiversity preservation,  biological invasion control,  and ecosystem management globally.

Evolve

Based on results from monitoring data and facilitated feedback discussions with the village grazing committees, rangeland restoration activities are identified as appropriate. This often requires the existing village grazing plan to be adapted and evolve with the changing state of the rangelands. For example, in Ngoley village, data collected over two years indicated one particularly problematic species (Sphaeranthus - locally called “Masida”) that proliferated significantly during a prolonged dry season and limited the regrowth of palatable species after the rains. To prevent further proliferation, an uprooting plan was designed and implemented based on the best practices for removing this particular species. Immediately after the first round of uprooting, the data show a drop in the species frequency and subsequent months of monitoring provide further evidence to suggest that native, palatable grasses are recovering in the treated plots. These targeted interventions directly contribute to GBF Target 1 by integrating biodiversity considerations into local planning and land use, and Target 2 by restoring degraded ecosystems. Furthermore, by improving ecological function and resilience, these efforts enhance the rangeland’s capacity to withstand climate variability, supporting both biodiversity and the well-being of local communities.

A close working relationship with village grazing committees is critical to develop, refine, and implement rangeland management plans. Where village grazing committees do not already exist, following existing government and traditional village structures, APW helps facilitate their formation, building capacity to manage rangelands. While there is incentive to sustainably manage grasslands, the implementation of restoration activities can be arduous. APW provides financial incentives in the form of stipends that expedite interventions while providing an additional benefit to the community members who participate. 

APW has learned the importance of working not just with village-level committees but also with larger ward-level governments. Many villages in northern Tanzania share rangeland or have adjacent pastures. Thus, it is necessary to work with neighboring villages to ensure continuity in management and connectivity of ecological benefits. Since adjacent villages may compete for high-quality rangeland, cooperative management of neighboring grazing areas is imperative. As villages are added to the program, gaps in ward-level management are filled by APW and other partners, moving one step closer to ensuring connectivity in a landscape shared by people, livestock, and wildlife.

In 2020, APW began conducting harmonization meetings that bring together different stakeholders from the village level, wards, divisions, districts, regions, different ministries, parastatal institutions, and NGOs among other stakeholders to discuss and streamline different agendas in regards to rangeland management in their different areas of work and also influence policy.

Collaborative Analysis and Application of Results

Our team analyzed the data with the combined expertise of our partners and in collaboration with a local NGO dedicated to reforestation efforts. This NGO is using our scientific findings to guide practical restoration actions, including the selection of plant species that attract and support local wildlife. This partnership ensures that our research is directly applied to enhance reforestation efforts, promoting self-sustaining and resilient forest ecosystems

Customized Implementation Approach

Given Lebanon’s unique climate and sample conditions, we tailored our field and lab methodologies to optimize DNA extraction from local animal scats. This customization involved developing protocols specific to the Mediterranean environment and sample quality, ensuring accurate results and maximizing the data yield from each sample.

Monitoring and evaluation for evidence-based practice and sustainability

This building block emphasises community participation in monitoring, utilising citizen science and accessible data platforms to ensure local knowledge informs adaptive management and contributes to the long-term success of mangrove restoration.

Effective monitoring and evaluation is necessary for adaptive management and long-term success in mangrove restoration. In implementing CBEMR, Wetlands International developed a restoration plan with clearly defined goals and objectives aligned with measurable and relevant indicators.

To ensure accurate and consistent data collection, a variety of methods were employed, including surveys, field observations, remote sensing, and the use of the Mangrove Restoration Tracker Tool. This tool, integrated with the Global Mangrove Watch platform, provided a standardised framework for documenting and tracking restoration progress, facilitating learning and information exchange among practitioners. 

Strengthening the capacities of mangrove champions from Lamu and Tana counties through standardised CBEMR trainings and tools provided for the integration of citizen science initiatives in mangrove restoration monitoring.  

Creating platforms for community feedback and input such as the national and sub-national mangrove management committees ensures that local knowledge and perspectives are incorporated into adaptive management strategies. By using monitoring data to inform decision-making and adapt project strategies, restoration efforts such as those in Kitangani and Pate restoration sites have been continuously improved to maximise effectiveness and achieve long-term success.

In implementing the CBEMR approach in Kenya, we have learned the following: 

  • Adaptive management is key: Monitoring data has allowed for ongoing learning and adaptation of restoration strategies based on observed outcomes.
  • Community involvement is necessary: Engaging communities who interact with the ecosystem on a daily basis in monitoring restoration efforts strengthens ownership and ensures that local knowledge informs decision-making.
  • Data accessibility and transparency are essential: Sharing monitoring results with stakeholders promotes accountability and facilitates collaboration and cross-learning. 
  • Long-term monitoring is necessary: Tracking progress over time provides valuable insights into the long-term impacts of restoration efforts.