Forming partnerships with local institutions

Host institutions are selected based on their capacity to support both classroom and field-based instruction, and on their engagement with active conservation challenges where technology plays a meaningful role. For instance, the RISE Grumeti Fund in Tanzania is an ideal training site, offering educational facilities, student accommodations, and running active, tech-enabled initiatives such as anti-poaching and rhino protection programs.

Furthermore, we prioritize institutions that share our commitment to advancing education for women and early-career conservationists, have strong ties to local conservation and research communities, and demonstrate leadership in integrating technology into conservation practice. These partnerships are essential to ensuring our program is both sustainable and deeply embedded in the communities it aims to serve.

  • Local partners with aligned visions in education, upskilling, and empowerment
  • On-the-ground support from women within the host and collaborating organizations
  • Networks of experienced local educators and trainers in the conservation technology space 
  • Host institutions with strong ties to local conservation, research, and government networks are best positioned to identify and recruit experienced female professionals to serve as trainers and mentors.
  • Institutions that already manage other training programs often have existing infrastructure and logistical systems in place, making them well-equipped to support student cohorts.
  • Sites where a wide range of conservation technologies are actively in use offer students valuable, hands-on exposure to tools in real-world settings.
  • A shared commitment to the program’s vision, particularly around gender equity and empowerment, is essential to creating a safe, supportive environment where women can build community, grow professionally, and develop leadership skills.
Academic Communication

Project findings were disseminated through multiple academic and public platforms, including:

  • An academic article in Ocean-Land-Atmosphere Research (a Science Partner Journal).
  • Featured content on the AAASScience WeChat Public Platform, the official media of the American Association for the Advancement of Science in China.
  • A case study contribution to the Yangtze River Delta Pilot Site.
  • Integration into major NSFC-supported oceanographic research projects.

GBF Alignment: Aligns with GBF Target 20.
Contribution: Enhances global conservation efforts by sharing scalable methodologies.

 

  • Transparent communication of challenges and methodologies enhanced engagement across disciplines.
  • Systematic presentation to stakeholders increased awareness and facilitated practical application.
  • Open and accessible dissemination promotes interdisciplinary collaboration and global knowledge sharing.
  • Publishing actionable insights in both scientific and public domains accelerates their translation into conservation practices.
Academic Communication

Results were disseminated via an academic paper in Ocean-Land-Atmosphere Research (a Science Partten Journal) and shared in AAASScience WeChat Public (Official Media of American Association for the Advancement of Science in China). The findings were also included as a case study in the Yangtze River Delta Pilot Site and included in the support of major research projects on oceanography by the National Natural Science Foundation (NSFC).

By systematically integrating remote sensing data, deep learning, and ecological analysis, the project has significantly advanced wetland conservation methodologies, offering scalable solutions for biodiversity preservation,  biological invasion control,  and ecosystem management globally.

Evolve

Based on results from monitoring data and facilitated feedback discussions with the village grazing committees, rangeland restoration activities are identified as appropriate. This often requires the existing village grazing plan to be adapted and evolve with the changing state of the rangelands. For example, in Ngoley village, data collected over two years indicated one particularly problematic species (Sphaeranthus - locally called “Masida”) that proliferated significantly during a prolonged dry season and limited the regrowth of palatable species after the rains. To prevent further proliferation, an uprooting plan was designed and implemented based on the best practices for removing this particular species. Immediately after the first round of uprooting, the data show a drop in the species frequency and subsequent months of monitoring provide further evidence to suggest that native, palatable grasses are recovering in the treated plots. These targeted interventions directly contribute to GBF Target 1 by integrating biodiversity considerations into local planning and land use, and Target 2 by restoring degraded ecosystems. Furthermore, by improving ecological function and resilience, these efforts enhance the rangeland’s capacity to withstand climate variability, supporting both biodiversity and the well-being of local communities.

A close working relationship with village grazing committees is critical to develop, refine, and implement rangeland management plans. Where village grazing committees do not already exist, following existing government and traditional village structures, APW helps facilitate their formation, building capacity to manage rangelands. While there is incentive to sustainably manage grasslands, the implementation of restoration activities can be arduous. APW provides financial incentives in the form of stipends that expedite interventions while providing an additional benefit to the community members who participate. 

APW has learned the importance of working not just with village-level committees but also with larger ward-level governments. Many villages in northern Tanzania share rangeland or have adjacent pastures. Thus, it is necessary to work with neighboring villages to ensure continuity in management and connectivity of ecological benefits. Since adjacent villages may compete for high-quality rangeland, cooperative management of neighboring grazing areas is imperative. As villages are added to the program, gaps in ward-level management are filled by APW and other partners, moving one step closer to ensuring connectivity in a landscape shared by people, livestock, and wildlife.

In 2020, APW began conducting harmonization meetings that bring together different stakeholders from the village level, wards, divisions, districts, regions, different ministries, parastatal institutions, and NGOs among other stakeholders to discuss and streamline different agendas in regards to rangeland management in their different areas of work and also influence policy.

Collaborative Analysis and Application of Results

Our team analyzed the data with the combined expertise of our partners and in collaboration with a local NGO dedicated to reforestation efforts. This NGO is using our scientific findings to guide practical restoration actions, including the selection of plant species that attract and support local wildlife. This partnership ensures that our research is directly applied to enhance reforestation efforts, promoting self-sustaining and resilient forest ecosystems

Customized Implementation Approach

Given Lebanon’s unique climate and sample conditions, we tailored our field and lab methodologies to optimize DNA extraction from local animal scats. This customization involved developing protocols specific to the Mediterranean environment and sample quality, ensuring accurate results and maximizing the data yield from each sample.

Monitoring and evaluation for evidence-based practice and sustainability

This building block emphasises community participation in monitoring, utilising citizen science and accessible data platforms to ensure local knowledge informs adaptive management and contributes to the long-term success of mangrove restoration.

Effective monitoring and evaluation is necessary for adaptive management and long-term success in mangrove restoration. In implementing CBEMR, Wetlands International developed a restoration plan with clearly defined goals and objectives aligned with measurable and relevant indicators.

To ensure accurate and consistent data collection, a variety of methods were employed, including surveys, field observations, remote sensing, and the use of the Mangrove Restoration Tracker Tool. This tool, integrated with the Global Mangrove Watch platform, provided a standardised framework for documenting and tracking restoration progress, facilitating learning and information exchange among practitioners. 

Strengthening the capacities of mangrove champions from Lamu and Tana counties through standardised CBEMR trainings and tools provided for the integration of citizen science initiatives in mangrove restoration monitoring.  

Creating platforms for community feedback and input such as the national and sub-national mangrove management committees ensures that local knowledge and perspectives are incorporated into adaptive management strategies. By using monitoring data to inform decision-making and adapt project strategies, restoration efforts such as those in Kitangani and Pate restoration sites have been continuously improved to maximise effectiveness and achieve long-term success.

In implementing the CBEMR approach in Kenya, we have learned the following: 

  • Adaptive management is key: Monitoring data has allowed for ongoing learning and adaptation of restoration strategies based on observed outcomes.
  • Community involvement is necessary: Engaging communities who interact with the ecosystem on a daily basis in monitoring restoration efforts strengthens ownership and ensures that local knowledge informs decision-making.
  • Data accessibility and transparency are essential: Sharing monitoring results with stakeholders promotes accountability and facilitates collaboration and cross-learning. 
  • Long-term monitoring is necessary: Tracking progress over time provides valuable insights into the long-term impacts of restoration efforts.
NoArk's Building Blocks

The building blocks of NoArk's solution are interconnected to create a comprehensive, efficient system for conservation and environmental management. Bio-acoustic and chemical sensors collect critical ecological data, while Edge AI processing ensures rapid, on-site analysis, enabling immediate detection and response. These components are supported by LoRaWAN connectivity, which facilitates reliable, long-range communication in remote areas. The processed data is centralized on the PAMS dashboard, where it is visualized and analyzed for actionable insights, fostering better decision-making.

This system is strengthened by hyperlocal climate data, which enhances precision in risk assessments and planning. Finally, community and stakeholder engagement ensures the data and tools are effectively utilized, promoting collaboration and adaptability. Together, these elements form an integrated solution that empowers conservation efforts, addresses ecological threats, and supports sustainable development.

The purpose of the building blocks in NoArk’s solution is to create an integrated and scalable system for addressing ecological, social, and economic challenges. Each building block plays a unique role and works in harmony with the others to deliver impactful outcomes.

How Each Building Block Works  

1. Bio-Acoustic and Chemical Sensors
  - Purpose: To monitor ecological and environmental health.  
  - How it Works: These sensors detect specific sounds (chainsaws, wildlife movement) and measure air and water quality, providing real-time data on biodiversity and pollution levels.  

2. Edge AI and IoT Integration
  - Purpose: To process data locally for faster decision-making.  
  - How it Works: Edge AI analyzes data directly on the devices, reducing reliance on cloud processing. IoT connectivity ensures data is transmitted securely and efficiently.  

3. LoraWAN Connectivity
  - Purpose: To enable cost-efficient, long-range communication.  
  - How it Works: LoraWAN ensures sensor data is transmitted over long distances with minimal power consumption, making it suitable for remote deployment.  

4. PAMS Dashboard
  - Purpose: To centralize and visualize data for actionable insights.  
  - How it Works: The dashboard aggregates data from all devices, providing tools for predictive analytics, real-time monitoring, and decision support.  

5. Hyperlocal Climate Data
  - Purpose: To support precise, localized interventions.  
  - How it Works: Sensors generate accurate, auditable data that informs risk assessments, conservation planning, and disaster management.  

6. Community and Stakeholder Engagement
  - Purpose: To ensure effective implementation and adoption of the system.  
  - How it Works: Partnerships with local communities, researchers, and decision-makers foster collaboration, capacity-building, and long-term sustainability.

Enabling Factors


- Technological Infrastructure: Reliable sensors, robust AI, and IoT technologies enable seamless data collection and processing.  
- Partnerships and Collaboration: Engagement with local communities, governments, and research organizations ensures the system is tailored to specific needs.  
- Scalability: LoraWAN and modular design allow deployment in diverse ecosystems and scaling to larger projects.  
- Sustainability: The system’s low power requirements and stakeholder involvement ensure long-term functionality and impact.  

These enabling factors ensure the building blocks work cohesively to deliver a holistic, impactful solution for conservation and environmental management.

Conditions Important for Success  

1. Reliable Technological Infrastructure  
  - High-quality sensors, robust Edge AI, and IoT systems are essential for accurate and timely data collection and processing.  

2. Strong Connectivity
  - LoraWAN or similar long-range, low-power communication systems are critical to ensure seamless data transmission in remote or challenging environments.  

3. Stakeholder Engagement  
  - Collaboration with local communities, governments, and researchers ensures the solution is contextually relevant, widely accepted, and effectively implemented.  

4. Scalability and Modularity
  - Designing systems that can scale and adapt to various ecosystems and environmental challenges is key to broader impact and replication.  

5. Sustainability Planning  
  - Developing low-power solutions, clear funding strategies, and community-driven maintenance plans ensures long-term functionality.  

6. Capacity Building
  - Training stakeholders, including local communities and enforcement agencies, to utilize and interpret the system’s data enhances the effectiveness of the solution.  

Lessons Learned

1. Adaptability is Critical
  - Each deployment requires customization to address local ecological, social, and economic conditions effectively.  

2. Community Involvement Drives Success
  - Engaging local stakeholders early fosters ownership, increases trust, and enhances adoption.  

3. Robust Data Systems Improve Decision-Making
  - Providing accurate, auditable, and traceable data builds credibility with decision-makers and supports informed interventions.  

4. Connectivity Challenges Must Be Addressed
  - Remote deployments need reliable communication systems like LoraWAN to ensure uninterrupted data flow.  

5. Integration of Multi-Sensor Inputs Enhances Impact
  - Combining bio-acoustic and chemical sensors with climate data creates a comprehensive understanding of ecological challenges, enabling holistic solutions.  

6. Continuous Feedback Loops Improve Performance  
  - Iterative updates based on field experience and stakeholder feedback optimize system performance and impact.  

By meeting these conditions and applying lessons learned, NoArk’s solution ensures effective implementation and significant positive outcomes for conservation and environmental management.

Building Block 3. Community Engagement and Capacity Building

In the third Building Block, there was emphasis on the training the local community through capacity-building initiatives that involved locals in restoration work using traditional and local materials, fostering community ownership and long-term sustainability. This included support from UNESCO Climate Change Champions who provided external expertise and support while empowering local stakeholders.

The enabling factors for this approach include support from experts in local knowledge who use lime for building; collaboration with local (local communities), national (government) and international (UNESCO) partners and stakeholders; and access to local materials and funding for training ensured that community members had the necessary resources to participate actively in the restoration efforts.

This approach not only empowered the community but also provided benefits to various groups, including women. The concept can be expanded to the wider community, encompassing fishermen and schoolchildren, who can also acquire valuable skills and knowledge in heritage preservation.

Action research on impact on mangroves and human well-being

In collaboration with the Kenya Forest Service, Kenya Marine and Fisheries Research Institute, and Kenyatta University, a research study was initiated to quantify the impact of ICS on pollution reduction, health outcomes, and deforestation. The study aims to assess social implications related to health and savings, evaluate the contribution of efficient stoves to mangrove conservation, analyse the role of fuelwood in carbon emissions at both county and national levels, and provide actionable recommendations for short- and mid-term strategies at national and local levels.