Educational Initiatives

Programs like eco-classrooms, guided tours, and school collaborations raised awareness, while immersive experiences, such as observing salmon in their natural habitats, fostered public engagement.

  • The Formosan landlocked salmon serves as a vital environmental indicator; protecting this species contributes to overall environmental improvement.
  • Environmental education initiatives include interpretive services and guided tours along Qijiawan River, collaborative community and tribal education efforts, conservation-focused courses and ecological camps designed with schools, and volunteer recruitment for hands-on conservation work.
  • Plans are underway to introduce immersive experience classrooms, where participants can wear wetsuits and enter the stream to observe the Formosan landlocked salmon in its natural habitat. These experiences aim to deepen public understanding, foster care, and inspire action to protect stream ecosystems and water resources.
  • The general public lacks sufficient awareness of the Formosan landlocked salmon. Environmental education through diverse channels is essential to garner greater support for conservation efforts.
Reforestation and Water Quality Improvements (In-Situ Conservation)

More than 500,000 native trees were planted, converting polluted farmlands into forested areas. Additionally, wastewater treatment systems were implemented to minimize runoff from recreational zones.

  • High-altitude agriculture in the upper Dajia River and its tributaries polluted the ecosystem, with water quality degradation being a primary factor in the near extinction of the Formosan landlocked salmon.
  • An intact forest environment supports the three critical conditions for the salmon's survival: temperature regulation, food availability, and clean water.
  • In 1997, plans were initiated to install wastewater treatment systems to manage sewage from Wuling Farm and surrounding recreational areas, with the first plant becoming operational in 2002.
  • Negotiations with Wuling Farm facilitated its transition toward eco-tourism, reducing agricultural activities and reclaiming farmland for reforestation.
  • In collaboration with the Forestry Bureau, 500,000 native trees were planted along the Qijiawan River and on reclaimed farmland to restore the riparian ecosystem.
  • In December 2006, the final 8.1 hectares of private land in the Wuling area were acquired, ensuring the Qijiawan River habitat remains free from pollution caused by high-altitude agriculture.
  • The presence of high-altitude agriculture stems from the economic needs of indigenous and local communities, highlighting the importance of fostering dialogue aimed at co-existence and mutual prosperity.
Habitat Restoration (In-Situ Conservation)
  • The conservation initiatives launched in the 1980s ultimately faced setbacks, with efforts declared unsuccessful in the 1990s. Key challenges identified included the absence of deep pools and typhoon shelters in high-altitude streams, along with disrupted habitat connectivity caused by silt traps.
  • Between 1999 and 2001, four silt traps on Gaoshan Creek, a tributary of Qijiawan River, were gradually removed or improved, leading to the observation of natural spawning by juvenile salmon.
  • In 2010, an assessment revealed that the No. 1 silt trap at the lowest part of Qijiawan River was a critical bottleneck, and it was removed in 2011.
  • After the improvement work on the weirs, the movement of silt and sand has altered the riverbed morphology both upstream and downstream, impacting the habitat environment and water quality—critical conditions for the survival of the salmon. Continuous monitoring is essential to track the trends and characteristics of riverbed evolution. 
Collaborating with Local and Indigenous Communities (Ex-Situ Conservation)

Indigenous Atayal communities played a vital role in conservation patrols and monitoring environmental changes. Partnerships not only created employment opportunities but also strengthened the cultural connection between the communities and the species.

  • In 2000, neighboring indigenous communities and partners (Sqoyaw Village and Nanshan Tribe communities) formed informal fish protection teams to protect the Formosan landlocked salmon within their traditional territories.
  • After the release of the salmon, monitoring and management efforts became essential, with collaboration from indigenous communities and local neighborhoods being prioritized.
  • Shei-Pa National Park's rugged terrain and vast management area make it ideal for indigenous people, who are familiar with the local landscape and can assist in comprehensive patrolling.
  • Indigenous communities possess rich traditional ecological knowledge, enabling them to detect habitat changes, identify threats from invasive species, and notice abnormalities in the ecosystem, providing invaluable insights for conservation efforts.
  • A co-management mechanism involving indigenous communities and local neighborhoods fosters more effective conservation actions and reduces potential conflicts, such as poaching or illegal activities.
  • This collaboration also provides employment opportunities for indigenous communities, alleviating economic pressure caused by the reduction of traditional hunting or farming activities. It integrates conservation efforts into the local economy, creating a win-win situation for both conservation and social development.
  • The final success of conservation efforts relies not only on the introduction of professional techniques but also on local community participation and the enhancement of awareness.
Reintroducing the Salmon to Its Historical Habitats (Ex-Situ Conservation)

Following habitat restoration efforts, including the removal of silt traps and reforestation along riverbanks, the salmon were reintroduced to five historical streams. Technologies, such as mini radio transmitters, were used to track the salmon’s behavior and assess the suitability of their restored habitats.

  • The Formosan landlocked salmon is a keystone species in stream ecosystems, with its presence helps maintain ecological balance. Restoring populations in historically distributed areas promotes the integrity and stability of local ecosystems.
  • The three-phase goal set at the 2000 Formosan Landlocked Salmon Conservation Research Symposium aims to restore its natural habitats, expand the species' natural distribution range, and reduce survival risks posed by issues like climate change.
  • The 2005 Wuling Stream Long-Term Monitoring Integrated Plan (2005-2013) involved monitoring habitats and species prior to the silt trap improvement plan, laying the groundwork for the restoration of ecosystem balance.
  • In 2017, a cross-regional collaboration with Taroko National Park enabled the release of Formosan landlocked salmon into Hehuan and Nanhu rivers, which are at higher elevations than the Qijiawan River.
  • Releasing salmon into different streams and different sections of the same stream fosters evolutionary diversity, contributing to the genetic diversity of the Formosan landlocked salmon.
  • In October 2023, a breakthrough in reintroduction techniques overcame the challenge of transporting fish over long distances. Through waterless transport, the eggs were transported and reintroduced into the upper reaches of Nanhu River, at an altitude of 2,200 meters in Zhongyangjian River.
  • In 2004, Typhoon Aere brought heavy rains and landslides that destroyed the hatchery along the Qijiawan River. The previous efforts were washed away, causing a 2–3-year disruption in the off-site conservation work. However, researchers and conservationists, equipped with prior experience, remained determined to persist in their efforts. To mitigate the impact of future extreme weather events, they also began releasing salmon into multiple streams, dispersing the risks associated with such climatic challenges.
Comprehensive life-cycle breeding program (Ex-Situ Conservation)

A comprehensive artificial breeding program was established over four years, producing 10,000 fish annually for conservation and reintroduction. Challenges included low genetic diversity and habitat-specific requirements.

  • A gene bank was established based on the concept of Noah’s Ark, aimed at increasing the population of the Formosan landlocked salmon through artificial breeding.
  • In 2000, the Formosan Landlocked Salmon Conservation Symposium was held, where a comprehensive conservation framework was developed. The goal was to gradually restore the five historical streams in the upper Dajia River, where the salmon originally thrived, within 30 years. A dual strategy of in-situ (on-site) and ex-situ (off-site) conservation was adopted.
  • Purely artificial breeding methods can reduce genetic diversity, so it is essential to establish a complete and sustainable breeding program.
  • There is limited experience in reintroducing endangered species, making it crucial to understand the life history and habitat requirements of the Formosan landlocked salmon. 
Technical Installation and Training

Ensuring that ScannerEdge devices are properly installed and configured in the field, with thorough training for operators to maximize their effectiveness in detecting illegal human activities.

Purpose: To equip field teams with the skills and knowledge to install, operate, and maintain ScannerEdge devices, ensuring continuous functionality in diverse environments.

How it Works: ScannerEdge is installed in strategic locations, configured via Bluetooth through a smartphone app, and calibrated to local RF conditions. Training includes understanding signal detection, troubleshooting, and device maintenance.

On-site, hands-on training yields better outcomes than theoretical sessions alone.

Operators need to understand both the technical and practical implications of the data collected.

Regular follow-ups improve long-term device functionality and user confidence.

Committee establishment, formalization and operationalization

Inclusive and participatory mapping of all stakeholders in the mangrove space in the five counties of Kwale, Mombasa, Kilifi, Tana River and Lamu. A series of meetings for sensitization on the National Mangrove Management Plan, and later facilitated formation of the national and five county committees. The committees were then facilitated in developing their workplans and executing some of the activities. This has since been picked up. 

Partnership and collaboration.

Inclusive processes

Willingness and trust amongst partners 

Forest Conservation and Management Act, No. 34 of 2016

An Act of Parliament that provide for the development and sustainable management, including conservation and rational utilization of all forest resources for the socio-economic development of the country and for connected purposes

Provides for overall management of forest in the country

Connecting the public

Connecting the public: This mini program aims to promote the mainstream of biodiversity conservation by desensitizing current monitoring data in the industry and designing low threshold interactions for the traditional data labeling process. This allows the public to participate in the training process of biodiversity models in a more accessible and intuitive way through the mini program. On the one hand, the public can enjoy and learn about the most authentic protection monitoring images through the form of "playing games"; On the other hand, the power of the public can be utilized to continuously train a universal model of biodiversity, achieving the goal of citizen science in the process.
Through product design, 'Wild Friends' breaks down the process of annotating and verifying institutional data into tool based tasks, reducing the initial training costs of institutions. With simple guidance, volunteers or the general public can complete basic annotation content.
The first step is to check for the presence of animals (manually identified or judged by AI);
Step two, estimate the number of animals (manually determined);
Step three, select animals (manually or through AI evaluation of selection accuracy);
Step four, identify the name of the animal (manually selected or judged by AI);
Step five, randomly allocate cross validation in the background. Ensure the accuracy and consistency of data.