Geospatial Planning and Risk Mapping

Dynamic risk maps, built using GIS and geospatial analysis, identify high-risk areas and guide resource allocation. This tool can be used for urban planning, disaster risk reduction, or managing natural resources like water or land.

  • Regularly refreshed data on terrain, vegetation, and weather is crucial for accuracy.
  • Trained personnel must operate geospatial tools and interpret risk maps.
  • Risk maps should inform planning and resource allocation at local and regional levels.
  • The expertise is crucial to help you build the correct framework in order to be scalable.
Whale-watching tour operators

Whale-watching tour operators

Willingness to participate. 

Love for the Marine Reserve. 

Make the tour operators ve a part of it. 

Technology

SMART Conservation Tool software

Plant Propagation: increased efficiency with improved collecting techniques

Once plants have been collected, they are transferred to our conservation nursery for propagation, or to our seed lab for viability testing and storage. We are seeing increased effectiveness of these methods with freshly collected seeds and cuttings making it quickly to our staff. As many of these individual plants were not previously known, these actions boost the genetic diversity of ex-situ collections, providing a safe place in the face of environmental degradation.

Previously, botanists would need to scale the remote cliff environments where these species occur, making conservation collections difficult and time-consuming to collect and transfer back to nursery staff for propagation. With the Mamba mechanism, collections are quickly collected and transferred to the nursery. 

Fresh cuttings and seeds have a higher success rate in propagation.

 

Drone Collection: Using a drone-based robotic arm to collect inaccessible plants

The Mamba tool allows us to collect plant material via seeds or cuttings from endangered species that we have identified and mapped in the previous building block. This tool has an effective range well over 1000m, making even the most inaccessible areas available for management actions. 

The development of this tool by experienced robotics engineers, expedited the conservation of many species by field staff at the National Tropical Botanical Garden and partners at the Plant Extinction Prevention Program. The Mamba has an interchangeable head system that provides customizable collecting depending on the target species and the type of material necessary for conservation. Many of the components of this mechanism are 3D-printed, which is cost-effective and flexible for speedy development processes. The Mamba is built with readily available drone components which also reduces the cost and building time. The development of this tool was undertaken by P.h.D students, and integrates state of the art hardware and software solutions specifically designed for this application.

When undertaking a project of this type, it is critical to have the proper pairing of experienced field staff with professional robotics engineers, as both parties provide crucial information to guide both development and effective conservation considerations. It is worth noting that the development process was iterative, leaving space for testing and revising the design, and ultimately allowing for deployment of a well-functioning and highly useful tool. 

Mitigate biodiversity loss

Conserving ecosystems is key to curbing climate change, and maintaining ecosystem services (GBF target 11), which are closely linked to over 50% of the world’s GDP. Over 1 million species face the threat of extinction this century; however, selecting which areas to conserve is challenging with the existing data gap, which is biased towards observations in the global north. Increasing the amount of biodiversity data in the Global South is critical in the conservation of endangered species, found at high density in biodiversity hotspots in the Global South. Amphibians are ideal for acoustic identification due to their diverse vocalizations and are crucial ecosystem indicators (Estes-Zumpf et al., 2022), with over 40% of species at risk of extinction (Cañas et al., 2023). Increasing labeled data for the more than 7,000 amphibian species worldwide would enhance conservation efforts and reduce knowledge gaps in vulnerable ecosystems. By using a citizen science platform to aid in the mitigation of biodiversity loss, we help establish local environmental stewardship of these critical habitats (GBF Target 20).

Other citizen apps have shown the potential that citizen science has on mitigating biodiversity loss. eBird, the largest citizen science project related to biodiversity, has 100 million bird observations from users around the world. These observations help to "document the distribution, abundance, habitat use and bird trends through collected species list, within a simple scientific framework." (Sánchez-Clavijo et. al., 2024).  

iNaturalist, another citizen science app, that uses computer vision algorithms for species identification, has also proven successful in mitigating biodiversity loss. To date, the app has over 200,000,000 observations, with 6 million observations per month, globally. On iNaturalist, research-grade observations are shared with GBIF, which in turn uses that knowledge for policy decisions, research, and community building (GBIF, 2023). 

Currently, our app identifies 71 species of frogs and toads, worldwide. Though many of them are identified as least concern (LC) under the IUCN, we do have one IUCN endangered species, the Southern Bell Frog (Ranoidea raniformis). This lack of threatened species included, underscores the need for diverse practitioners to participate in bioacoustic ecological monitoring. Increasing data points on vulnerable species can serve to inform policy decisions using data-driven insights. Local communities and Indigenous Peoples will be a key asset in increasing the number of species included in the app, as their local knowledge allows us to track species in remote regions. 

  • Closing data gaps: get more data from citizen scientists, especially from local communities and Indigenous Peoples.
  • Enabling environmental stewardship: accessibility to a diverse set of users.

We initially set a goal to decrease data gaps in the Global South. However, getting access to enough calls for rare, cryptic, and endangered species in the Global South to train our model proved to be challenging. Therefore, to improve model performance, we turned our attention to as many species as we could tackle, worldwide. Getting users engaged worldwide will lead to more recordings in data-poor regions like the Global South, allowing us to retrain our model in the future with increased data on endangered, rare, and cryptic species. 

This user engagement perfectly aligns with multiple targets, the most evident one being GBF target 20: Strengthen Capacity-Building, Technology Transfer, and Scientific and Technical Cooperation for Biodiversity. But other targets are key in this building block: by increasing the data points, we will be able to identify invasive alien species, addressing GBF Target 6, as well as protecting wild species from illegal trade, by obscuring their location from users. This is aligned with GBF Target 5, which seeks to "Ensure Sustainable, Safe and Legal Harvesting and Trade of Wild Species."

Spatial Sensitivity Assessment of Biodiversity and Speleological Heritage to Mining

The Biodiversity Sensitivity Map provides a spatial representation of the varying degrees of vulnerability of conservation targets to mining-related impacts. It integrates biological and ecological characteristics of species and ecosystems, along with the influence of anthropogenic pressures, to create a comprehensive sensitivity gradient—referred to as the Biodiversity Sensitivity Index.

This index ranks the entire study area into four sensitivity classes, ranging from “Extremely Sensitive Areas” to “Less Concerning Areas”, with each category representing approximately 25% of the total area. The classification follows principles of systematic conservation planning, incorporating spatial representations of both the distribution and sensitivity of each conservation target.

Certain species, habitats, or ecosystem services are more vulnerable due to intrinsic biological or ecological traits, or due to their geographic location. Moreover, the model considers landscape-level attributes—such as environmental conditions that either support or hinder biodiversity persistence—that are not directly tied to the mining threat but are critical for understanding overall ecological resilience.

Importantly, only targets that are likely to become even more vulnerable in the absence of preventive or mitigation measures were included in the mapping, ensuring that the tool supports strategic planning and prioritization for conservation in the context of mineral exploration.

Key enabling factors for the development of the biodiversity sensitivity map included access to specialized knowledge through collaboration with the National Centers for Research and Conservation of Fauna (ICMBio), and utilization of the Biodiversity Extinction Risk Assessment System (SALVE) (https://salve.icmbio.gov.br), which contains occurrence records validated by taxonomic experts. Additionally, coordination with the National Center for Flora Conservation (CNCFlora) (http://cncflora.jbrj.gov.br/portal) was essential for the identification of priority conservation targets for flora.

The construction of the tool contributed to the improvement of participatory methods, considering that the involvement of different actors in the discussion and elaboration of PRIM Mining is crucial to guarantee transparency in the processes of defining targets and analysis parameters, increasing the reliability, robustness and scope of the results.

Technology-enhanced wildlife monitoring

This building block emphasizes the transformative role of technology in monitoring wildlife populations and habitats, particularly jaguars. As apex predators, jaguars are key indicators of ecosystem health; understanding their movements and habitat use is vital for effective conservation. Using tools like camera traps, drones, and remote sensing, we collect high-resolution data on jaguar behaviors and habitat changes. Strategically positioned camera traps provide real-time insights into movements, breeding, and conflicts, supporting adaptive management and rapid responses.

Combined with satellite imagery, these technologies offer a holistic view of habitat conditions, tracking land use changes, vegetation cover, and threats such as poaching. Data are transmitted via mobile and satellite networks to a centralized platform, enabling timely analysis and coordinated conservation actions. The program incorporates citizen science by training local community members in data collection and reporting, fostering ownership and enhancing local capacity. E-waste generated by equipment is responsibly managed through certified recycling. This participatory, tech-driven approach strengthens conservation outcomes and long-term sustainability.

Access to reliable technology and sustainable funding—for equipment such as camera traps, drones, and laptops—is essential. Financial support can come from government grants, NGOs, and private-sector partnerships. Collaborations with academic institutions and technology firms are critical for delivering training in data collection, analysis, and tool operation. Engaging local universities fosters research opportunities and strengthens the knowledge base on jaguar conservation.

Strong partnerships with wildlife authorities ensure that data informs local management strategies, while clear protocols for data sharing safeguard ethical use. Responsible management of electronic waste, through recycling programs, is also essential for environmental integrity. Together, these enabling factors establish a robust system for effective, technology-enhanced wildlife monitoring.

Fostering local stewardship through participatory monitoring enhances data accuracy and cultivates community responsibility for conservation. Direct engagement builds trust between practitioners and communities, fostering transparency and long-term support for conservation efforts. Training on technology use not only develops valuable skills but also creates employment opportunities in wildlife protection, environmental education, and eco-tourism.

We learned that combining advanced technology with community engagement is a promising approach to conservation: it bridges scientific data collection with local knowledge, enabling timely, informed decisions that mitigate human-wildlife conflict and support habitat connectivity. Ensuring sustainable funding, responsible e-waste management, and ongoing capacity building are essential for maintaining program effectiveness over time.

Identifying areas most impacted by mining activities - Impact Exposure Map

A process designed to estimate the chronic impacts of mining activities on the landscape—such as habitat loss, fragmentation, and degradation. This analysis generates a gradient of exposure for biodiversity and speleological heritage, indicating varying levels of environmental damage severity. The mining impact exposure map provides a spatial representation of the risks to which conservation targets are subjected, allowing for a detailed assessment of biodiversity vulnerability. Identifying the areas most intensely affected by mining enables more strategic and informed planning efforts to minimize biodiversity loss.

The process involves coordination with sectoral bodies, the systematization of environmental data, and the validation of results through expert consultation. The methodologies employed are scientifically validated, widely accepted by the academic community, and designed to be replicable across different regions and landscape scales.

 

The construction of this layer was made possible by the increasing efforts of MapBiomas to map all remaining forest cover at the national scale in Brazil, as well as the National Mining Agency (Agência Nacional de Mineração - ANM) for providing the polygons of authorized mining processes across the country.

Access to accurate spatial data for calculating landscape metrics, combined with a network of collaborating experts in the field, enabled a participatory and transparent development of the results.

We gained valuable insights throughout the development of this layer and significantly evolved our approach by actively sharing information with the mineral sector and research institutions.

During the construction of a synergistic impact layer for mining activities, we identified a significant gap in available data, quantitative metrics, and modeling frameworks necessary to incorporate well-documented impacts—such as noise generation, vibration, air pollution, and soil and water contamination—at this spatial scale. This process highlighted the critical need to enhance impact assessments by accounting for the synergistic and cumulative effects of mining activities.

 

Understanding scavengers, predators, their communities, ecosystems and conservation challenges

Vultures are a highly intelligent group of birds that provide important ecosystem services. Yet, populations of old-world vultures decreased dramatically in the last decades owing to anthropogenic factors. Efficient conservation strategies that address critical threats such as indiscriminate poisoning or depleted food sources need to be developed. At the same time, their behaviour including social interactions is still poorly understood. Building on high-tech tracking equipment and AI-based analytical tools, GAIA aims at better understanding how vultures communicate, interact and cooperate, forage, breed and rear their young. Additionally, the GAIA scientists research the social foraging strategies of white-backed vultures and the information transfer within carnivore-scavenger-communities. In the animal kingdom it is common across taxa that the search for food is undertaken not only as individuals but in a group. Animals forage together or rely on knowledge from other individuals to find food. This so-called social foraging presumably yields benefits, for example concerning the amount of food that is found, the size of prey that can be hunted or the time required to access food. GAIA investigates species-specific mechanisms in behaviour and communication as well as the incentives, benefits and possible disadvantages for individuals.

By further understanding these intra- and inter-speficic connections and interactions, GAIA also contributes to better understanding roots of human-wildlife conflicts (which are often connected to carnivore behaviour) and to species management. In Namibia for example, research into the lion communities helps understanding their spatial behaviour and mitigating contacts with the local population (e.g. cattle farmers) to manage human-wildlife conflict (GBF target 4). This knowledge is also utilized to observe and manage local lion populations sustainably to benefit people (GBF target 9), balancing conflict mitigation and tourism.

This building block is enabled by experience, funding and access: GAIA had the resources to hire excellent scientists with years of experience in investigating animal behaviour, spatial ecology, carnivore-scavenger interaction, intraspecific communication and human-wildlife conflicts. Additionally, GAIA stands on the shoulders of several decades of integration into science and stakeholder communities in wildlife management and conservation in southern Africa. This allowed access to protected/restricted areas with research permits to tag birds and collar carnivores for example. 

Newly published research results from the project (https://doi.org/10.1016/j.ecolmodel.2024.110941) confirm the benefits of cooperation and social information for foraging success. The results highlight social foraging strategies such as “chains of vultures” or “local enhancement” as overall more advantageous than the non-social strategy. The “chains of vultures” strategy outperformed “local enhancement” only in terms of searching efficiency under high vulture densities. Furthermore, the findings suggest that vultures in our study area likely adopt diverse foraging strategies influenced by variations in vulture and carcass density. The model developed in this study is potentially applicable beyond the specific study site, rendering it a versatile tool for investigating diverse species and environments.