Establishing a set of race regulations that places science at the centre of racing activities

The Ocean Race Teams Sustainability Charter and Code of Conduct was co-created with the teams to express a fleet-wide commitment to sustainable operations and supporting a healthy ocean. The charter includes themes of Advocacy, Science, Learning and Operations. It seeks to get all teams, staff, and sailors to stand up for the ocean through sustainable sailing, team, and personal actions. 

 

On the science front, teams must pledge to agree to:

 

  • Supporting science-based decision making.
  • Participating in increasing knowledge and understanding of our ocean.
  • Hosting scientific equipment onboard.
  • Participating in sailor and citizen science programmes.
  • Contributing to the United Nations Decade of Ocean Science in collaboration with The Ocean Race.

 

Including science within a charter and requiring stakeholders to undertake various science-related activities whilst competing in a sailing race embeds science, as a core value, into race practices. This is unique in the sporting world as it requires teams and athletes to take on environmental responsibilities as well as their existing sporting responsibilities.

 

  • Awareness of climate change and the importance, and fragility, of oceans. 
  • Desire to protect oceans and sailing’s ‘racetrack’.
  • Understanding the importance of data collection for climate and ocean science.
  • Desire to use sailing and racing beyond sporting objectives, as a platform for scientific research.

Collaboration is key, everyone needs to take part and be responsible for a better future for all. 

 

Engagement with the teams, partners and host cities  needs to be early on and there is a need to support them in their journey - not as an afterthought or last minute addition. There needs to be someone within each team that is dedicated to Sustainability and maintaining the Sustainability Charter within their team and department. It is important not to underestimate the amount of work needed to maintain the Sustainability Charter and our sustainability goals - assign enough resources!

 

In an event like The Ocean Race, there are also challenges due to unpredictable circumstances like boat repairs from dismasting or collisions which can increase the footprint and environmental impact of the team and the Race. It is important to have some extra capacity and contingencies to offset unforeseen circumstances like these. 

A unique racecourse that provides access to geographically extreme and data-sparse areas across the planet’s oceans

The underlying premise for The Ocean Race – racing to circumnavigate the world – means that the race naturally takes competitors to some of the most remote areas in the world. This makes it a unique platform for undertaking scientific research as it gives scientists access to remote areas, such as the Southern Ocean around Antarctica, that would otherwise rarely be accessible. Ships sailing outside of regular shipping routes play an essential role in the ability to deploy scientific instrumentation, such as the drifter buoys and Argo floats that are deployed during the race, across under-sampled locations. This affords rare opportunities for gathering data from parts of the planet where little information has been recorded, making the Race a crucial platform for collecting data that is otherwise unattainable and filling data gaps, contributing to furthering our understanding of our oceans. 

 

  • The underlying premise for The Ocean Race – circumnavigating the world as fast as possible – means that the race will invariably take boats to areas that are infrequently sailed. 
  • The design of the race route (race legs, race stopovers, etc.) will determine where boats go.
  • Sailing race boats allow access to some of the planet’s most remote seas as well as areas outside common shipping and research routes.

The race’s route, with stopovers in different countries, presented logistical challenges regarding the transportation of scientific equipment to stopover ports as well as the shipment of samples, material, and instruments back to scientific partners. For example, shipments were subject to varying import conditions and customs duties depending on their country of origin and destination. 

 

Working with local scientific institutions helped with equipment, transporting the equipment on person and working diligently with customs before, during and after transport. Logistics for an international science experiment needs to be well planned out in advance and all admin done in advance regarding shipment of equipment and samples etc.

Marine Management

Much support was given to improve fisher capacity to manage their access to and use of Fish Aggregating Devices (FADs). The programme recognised that the establishment of marine managed and protected areas as a method of marine management has resulted in increased reliance on Fish Aggregating Devices installed outside the marine managed and protected areas, for sustenance of the fishery sector.  Fishers within the Carriacou Fisher Folks Inc also recognised this and the need for attention to be paid to the monitoring and management of this resource.  This beckoned the implementation of FAD Data Management training for fishers of Carriacou and Petit Martinique.  The training was facilitated through the Fisheries Department of the Government of Grenada, and included information sharing on, but not limited to data on marine conservation, history of FADs in the region, the importance of data collection, legislation, its challenges, development of informal protocols and rules, identifying fish species as well as data collection methodology and post data collection analysis.  The workshop also realised the commitment of fishers to establish GrenFAD, which will take the leading role in the management of the FADs.  The fishers agreed and signed off on the soft rules for FAD Fishing, membership and FAD fees, data collection, data collection templates and protocols for data collection and management.  Actors in the fishery sector and marine management/protection were also trained in the use of underwater drones for remote sensing. The Programme provided support for construction of at least 6 FADS for the St. Marks fishers in Dominica. In the case of Saint Lucia, the provision of navigational tools to assist in accessing the FAD locations, which are often many miles offshore, and generally speaking to assist with safety at sea.

With increased application of marine management strategies, there has been increased use of FADS to supplement the loss of access to fishing grounds which have been redesignated as protected areas, managed areas or reserves.  Thus, the CATS interventions to improve capacity to manage these FADS were quite opportune in timing, and the fishers were keen on participating in the interventions related to them.  In the case of the ROV’s this improved capacity enabled the beneficiaries to be ready to improve their monitoring efficiency and quality. 

The Programme recognised the need for practical, user-guided solutions and implementations as critical elements for success and long term and far reaching benefits from the same.  With regard to the FAD management and trainings, this process was smoothly executed with fishers taking ownership of this and taking the lead to put arrangements in place to better manage their FADs.

Business and Technical Capacity Development

Building resilience of the agricultural sector against the effects of meteorological variations includes building the resilience of small businesses along the value chains which use the produce from agricultural production.  Through the Business Capacity Development measure, two women-only local agro-processing groups which process local produce for the local and national market, benefitted from theoretical lectures and hands-on exercises on crucial business aspects (costs, revenues, new product ideas, design, marketing and the management of their business) so they could apply the knowledge gained to improve the quality of their decision making.  The core topics addressed during the training were:  Entrepreneurship Essentials, Introduction to Marketing; Basic Book-Keeping Principles; Essential Costing Practices; Office Administration, financial education, business management and investment-driven market expansion and borrowing.

Both groups acknowledged that they did need to improve their operations to achieve business success as their ability to improve sales relies on their being able to overcome hindrances in their daily operations. The capacity building exercise was therefore an opportunity for them to gain skills to help overcome these challenges.   

While these activities assisted the partners in facing, in a practical manner, technical and implementation challenges they would face in their operations there is also need for training in interpersonal engagement eg. Effective communication, conflict resolution, management and other soft skills critical for effectively managing the interpersonal components of business management. 

Youth Engagement

Educational and knowledge exchange programs were used to promote awareness of the importance of effectively managing ecosystems.  By focussing on the younger generation, the Programme sought to incorporate sustainability into its impacts as these youth would be the decisionmakers of the future. Further, there is the observation that children tend to share whatever they have learned with their parents. Thus, it is seen as an opportunity to reach the wider community with information.  Several approaches were executed.  In 2017, the Programme supported the Soufriere Scotts Head Marine Reserve (SSMR) Day in Dominica, a major collaborative effort between local authorities and the CATS programme.  500 primary school students and 81 teachers from 33 primary schools participated in activities that promote the understanding of the ridge to reef concept.  There was also adoption of the Soufriere Primary School as a Reef Guardian School.  This initiative served the dual purpose of educating and raising awareness of students and by extension, their parents, of the ridge to reef concept, and also making teachers more aware of these, so they could better instruct their students.  Also, in Soufriere Saint Lucia, three schools benefitted from support for the establishment of low chemical garden plots to produce food for the School Feeding Programmes embarked on these schools. The garden establishment also involved active participation of the children in the gardening process and revenue generation by the school through sale of excess produce.  This also realised development of management guidelines to be used by the schools for managing their existing plots as well as implementing similar. 

There is increased awareness of the importance of ensuring that the younger generation are fed good quality food.  This in addition to the need for easy access to good quality food secured the buy in needed for the execution of the school food production projects in St. Lucia.  In the case of Dominica, the SSMR Day event was already an initiative implemented by the Fisheries Division for years and thus there was already an appetite in the society for it.  The Reef Guardian programme could be considered an offshoot stimulated by the aforementioned SSMR Day. 

In engaging schools it is critical to incorporate parental support.  This not only is in an effort to ensure their consent, but also to create opportunities for parents to have a better understanding of the information being shared with their children, granted, these concepts are important for societal wellbeing.  They could also provide support for implementation even after the project would have ended.  It was also critical to obtain buy in from the school administrations which would have to put all conditions in place to support the establishment of the initiatives, but also the continuity of the same.

Land Management - Good agricultural practices

The CATS Programme was based on the acknowledgement that good practices within the terrestrial zone augur well for the health of the coasts and marine spaces.  Thus, it worked with practitioners (farmers, foresters, agroprocessors) within this space by teaching and reinforcing good practices that could be incorporated within their operations.  A small group was also taught the specialised skills for mushroom cultivation as an alternative to traditional crop production.  This niche area was anticipated to increase food production diversity as it aligned with the practices of good resource management, recycling of byproducts and resilience.  For practitioners at the management level, the Programme supported the training of various persons in the practical application of Unmanned Aerial Systems for natural resource management and monitoring.  Since CATS Programme’s introduction of this, several other organisations both private and public sector have embarked on similar trainings for their officers. 

Resource management was an area of much focus by various actors within the stakeholder community.  Thus, the challenge of obtaining buy-in and interest was minimal.  Partners already had at least a basic understanding of the importance and relevance of effective resource management and the interconnection between the terrestrial and marine spaces.  Further, given there were several other actors in the technical support and grant sectors with whom it was possible to collaborate to maximise results.  Support from the ministries of agriculture in the various islands was also an enabling factor.  Their technical expertise helped facilitate the implementation of the various initiatives. The ministries were the principal source of technical support for all terrestrial interventions under the programme. With regard to the management level, the actors, particularly in the forestry sector, saw the technology as a very relevant intervention as they were keenly aware of their monitoring limitations and saw the tool as an opportunity to improve the scope and efficiency of their monitoring. 

The incorporation, within farming practice, of non-synthetic inputs for fertility and control of pests and weeds, though widely practiced many decades ago, is now alien to the majority of farmers.  Modern farmers rely on their crop for their livelihoods and have clearly expressed that they are not willing to experiment on their sale crops by incorporating improved practices.  They expressed concern about the risk of diminished crop quality, a situation which would reduce their revenue.  They were unconvinced that they would be able to sustain their livelihoods if they were to change their farming practice to be more environmentally friendly. Thus, and future iterations of projects seeking to improve farm practices would have to incorporate significant investment and focus on demonstration plot establishment, research and development and start-ups.  Despite having gone through a very rigorous process of participant selection for the mushroom cultivation training, it was recognised that the personal economic challenges and ambitions of the participants was an inhibiting factor; although all the trainees were keenly interested in pursuing the business start-up, they were challenged by the need to have secure revenue, and found it easier to continue their modus operandi prior to the training, as opposed to making the sacrifice needed to start the new businesses.  All this was despite the project incorporating in its design access to raw materials needed for production during the initial months of production.  The high-risk aversion of persons being encouraged to start up new businesses needs to be overcome by incorporating even more support mechanisms.  The Programme failed to complete the second phase of the remote sensing training, thus pilots trained and their organisations failed to attain the full support needed to confidently incorporate remote sensing in their operations.  Future such interventions should ensure completion of all necessary phases of support to ensure sustainability. 

Stand on existing binational platforms

Three binational (Canada-United States) commissions play a role in the protection and restoration of the Great Lakes, including the Great Lakes Commission (GLC), Great Lakes Fishery Commission (GLFC), and International Joint Commission (IJC). More specific to the Great Lakes, the work of the IJC is supported through the Great Lakes Water Quality Agreement (GLWQA). While none of these commissions explicitly represents and advances an agenda related to protected and conserved area (PCA) networks, they share goals and have capacities that can support such networks. 

To this end, the Great Lakes Protected Areas Network (GLPAN) continues to find opportunities to profile PCAs, meet its network ambitions, and address conservation issues by standing on these platforms. In particular, the GLWQA has specific Annexes addressing the priority issues which are also of importance to PCAs, such as Habitat and Species, Climate Change, Aquatic Invasive Species, Science, and Lakewide Management. Engaging with the GLWQA is an effective means to address conservation at scale and represents a significant return on investment given the capacity and collaborative support partners bring. More specifically, "Lakewide Action and Management Plans" (5 year rotation on each of the 5 Great Lakes) and "Cooperative Science and Monitoring Initiatives" are two GLWQA initiatives that PCAs and PCA networks can lever and contribute to help advance conservation efforts.    

  • There are members on GLPAN who either work for a respective Commission or are actively involved in GLWQA committees. 
  • The efforts of the GLWQA and GLFC on issues such as aquatic invasive species, climate change, habitat and species, and water quality are collaborative in nature and implemented at a scale.  
  • While other platforms/forums may be involved in protection and restoration, PCAs may need to be prepared to express their own issues and concerns, that is, don't assume others will represent.
  • There are agencies working on Great Lakes protection and restoration space at a policy-level and welcome the opportunity to practice in a place-based manner with PCAs. 
Green Financial Instruments with Microfinance Institutions

BioInvest developed sustainable methodologies to create green financial instruments and measure their impact on the environment in collaboration with microfinance institutions.

Collaborative partnerships with microfinance institutions, customisation of green financial instruments, and continuous monitoring for effectiveness are enabling factors.

The development of customised methodologies in collaboration with public and private sectors is crucial. These frameworks play an important role in responding to sector-specific needs and promoting sustainable practices.

Response - control and extinguish wildfire

Implementing the actions described above in review, risk reduction, and readiness allows communities to respond to wildfires. On receipt of a wildfire alert, the Community Wildfire Management Team will either send a team member or ask a nearby community member to visit the site and assess the situation. On confirmation of an active fire, the Community Wildfire Management Team will determine if it requires suppression, and if so, attend and suppress the fire with the appropriate equipment. If the fire is not threatening shrubland or flooded forest, then they will monitor the situation.

Effective fire suppression requires on-ground planning and clear roles and responsibilities among the Wildfire Management Team. It is important that a clear and safe plan is developed and agreed to amongst the team as to how to approach and suppress wildfire and each team member’s role in doing so.

Recording the details of each fire alert, confirmed wildfire, and action taken to address each wildfire is important so that we can learn from our experiences and adaptively manage wildfires in the future. This information is needed for both the review and recovery components of the 5Rs.

Effective fire suppression requires:

  • Early warning of a wildfire
  • A trained and confident fire management team who can safely suppress wildfire with well-maintained locally sourced equipment.

Important lessons in responding to wildfire include:

  • Inexpensive locally sourced equipment that can be adapted to wildfire suppression is preferrable to expensive imported specialist equipment. Our community partners experience with locally sourced equipment demonstrated their familiarity with it, its effectiveness in suppression wildfire, and ease of replacement. 
  • A variety of tools can be used to suppress wildfire. Community Wildfire Management Team members reported that they most often used hand tools such as rakes, hoes, and bush knives to remove flammable material and create a bare earth barrier. They also used backpack water sprayers to suppress wildfire.
  • Whilst Community Wildfire Management Teams often used water to suppress wildfire, the larger and heavier water pump and hoses could often not be used due to difficulty in accessing sites and lack of access to water (e.g. lake, streams, or ponds).
  • A clear description of the fire ground helped the Community Wildfire Management Teams decide on which equipment to deploy. For example, site access and a nearby supply of water is needed before a water pump and hoses are deployed.
Readiness - prepare for wildfire

Despite the best risk reduction efforts - fires will still occur, and partner communities need to be prepared to suppress them. To be ready to suppress fire CBFiM groups require:

  • well maintained locally sourced fire suppression equipment including protective clothing;
  • fire management training; and
  • real-time satellite-based fire alerts. 

Each community wildfire management team should frequently patrol high-fire risk areas during the fire season. This allows them to identify and address high-risk behavior before a fire starts, monitor fuel loads, and assess access routes and water availability in the event of a fire.

Being ready to suppress wildfire requires:

  • A functioning community wildfire management team.
  • A system that detects wildfire and can alert the community wildfire management team.
  • External resources are needed to manage wildfire alerts, as due to technical constraints and community capacity they cannot be provided directly to community groups for action.

Lessons for being ready to suppress wildfire include:

  • Providing communities with protective clothing that are made of natural materials such as cotton, as polyester is flammable and highly dangerous when exposed to open fires. The provision of this safety equipment is important as most community members’ day to day clothes are not safe when worn to suppress wildfires.
  • Our partner communities reported that OroraTech’s wildfire alerts forwarded by project staff frequently warned them of fires before they were observed on the ground. This service is extremely valuable to them as they can respond quickly, investigate, and stop wildfires before they become large and uncontrollable.